Due: Tuesday Novembe 24th 2020

Problem to be turned in: 1, 2(e), f

- 1. Let X be a random variable with density $f(x) = 3x^2$ for 0 < x < 1 (and f(x) = 0 otherwise). Calculate the distribution function of X.
- 2. Let $X \sim \text{Uniform}(0, 1)$.
 - (a) Let $Y = \sqrt{X}$. Determine the density of Y.
 - (b) Let $Z = \frac{1}{X}$. Determine the density of Z.
 - (c) Let r > 0 and define Y = rX. Show that Y is uniformly distributed on (0, r).
 - (d) Let Y = 1 X. Show that $Y \sim \text{Uniform}(0, 1)$ as well.
 - (e) Let a and b be real numbers with a < b and let Y = (b a)X + a. Show that $Y \sim \text{Uniform}(a, b)$.
 - (f) Find a function g(x) (which is strictly increasing) such that the random variable Y = g(X) has density $f_Y(y) = 3y^2$ for 0 < y < 1 (and $f_Y(y) = 0$ otherwise).
- 3. Let $X \sim \text{Uniform}(\{1, 2, 3, 4, 5, 6\})$. Find the distribution function $F_X(x)$.
- 4. If $X \sim \text{Normal}(0,1)$. Let $Y = X^2$. Find the density function of Y