Due: Tuesday Novembe 17th 2020

Problem to be turned in: 4,6,9.

1. Let X and Y be discrete random variables with Range $(X) = \{0, 1, 2\}$ and Range $(Y) = \{1, 2\}$ with joint distribution given by the chart below.

	X = 0	X = 1	X = 2
Y = 1	0.1	0.2	0.1
Y = 2	0.3	0.2	0.1

- (a) Find E[XY].
- (b) Compute Cov(X, Y) := E[XY] E[X]E[Y]

2. Let X, Y be discrete random variables. Suppose $X \leq Y$ then show that $E[X] \leq E[Y]$.

- 3. Let $X \sim \text{Geometric}(p)$ and let A be event $(X \leq 3)$. Calculate E[X|A] and Var[X|A].
- 4. Let X and Y be described by the joint distribution

	X = -1	X = 0	X = 1
Y = -1	1/15	2/15	2/15
Y = 0	2/15	1/15	2/15
Y = 1	2/15	2/15	1/15

and answer the following questions.

- (a) Calculate E[X|Y = -1].
- (b) Calculate Var[X|Y = -1].
- (c) Describe the distribution of E[X|Y].
- (d) Describe the distribution of Var[X|Y].
- 5. Let f(x) be defined by

$$f(x) = \begin{cases} 2x & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

- (a) Show that f(x) is a probability density function.
- (b) Let P be the probability whose density is f. Calculate $P((0, \frac{1}{2}))$.
- 6. Let f(x) be defined by

$$f(x) = \begin{cases} C \cdot \sin(x) & \text{if } 0 < x < \pi \\ 0 & \text{otherwise} \end{cases}$$

where C is a yet-to-be-determined constant.

- (a) Determine the value of C that makes f(x) a probability density function.
- (b) Let P be the probability whose density if f. Calculate $P((0, \frac{1}{2}))$ and $P((\frac{1}{2}, 1))$.
- (c) Which will be larger, $P((0, \frac{1}{4}))$ or $P((\frac{1}{4}, \frac{1}{2}))$? Explain how you can answer this question without actually calculating either probability.
- (d) A game is played in the following way. A random variable X is selected with a density described by f(x) above. You must select a number r and you win the game if the random variable results in an outcome in the interval (r 0.01, r + 0.01). Explain how you should choose r to maximize your chance of winning the game. (Very little computation should be required to answer this).
- 7. Let $X \sim \text{Exp}(\lambda)$. The "90th percentile" is a value *a* such that *X* is larger than *a* 90% of the time. Find the 90th percentile of *X* by determining the value of *a* for which P(X < a) = 0.9.
- 8. The "median" of a continuous random variable X is the value of x for which $P(X > x) = P(X < x) = \frac{1}{2}$.
 - (a) If $X \sim \text{Uniform}(a, b)$ calculate the median of X.
 - (b) If $Y \sim \text{Exp}(\lambda)$ calculate the median of Y.
 - (c) Let $Z \sim \text{Normal}(\mu, \sigma^2)$. Show that the median of Z is μ .
- 9. Let $X \sim \text{Normal}(\mu, \sigma^2)$. Show that $P(|X \mu| < k\sigma)$ does not depend on the values of μ or σ .