Recall: (x, y) have a joint density

$$
\begin{aligned}
f: \mathbb{R}^{2} & \rightarrow \mathbb{R}_{+} \text {if } \\
\mathbb{P}(x \leq x, y \leq y) & =\int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) d v d u
\end{aligned}
$$

- x, y an rielependent then

$$
f(x, y)=f_{x}(x) f_{y}(y)
$$

- Transformation of random variable

$$
\begin{aligned}
Y & =g(x) \\
-\quad F_{y}(y) & =\mathbb{P}(y \leq y)=\mathbb{P}(g(x) \leq y) \ldots \text { to knoun } x
\end{aligned}
$$

- differatiate $F y()$ to set pid.f of Y
- X, Y are two inelependent random variables with pdf $f_{x}(\cdot)$ and $f_{y}($.
$z=x+y$ - $Q:$ Find distribution of z.
Step 1:- Find $F(z)=\mathbb{P}(2 \leq z)$

$$
\begin{aligned}
F(z)= & \mathbb{P}(z \leq z) \\
& =\mathbb{P}(x+y \leq z) \\
& =\iiint_{-\infty} f(x, y) d y d x \\
& \{(x, y): x+y \leq z\} \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) d y d x \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{z_{-}-x} f_{x}(x) f_{y}(y) d y d x
\end{aligned}
$$

$$
F(z)=\int_{-\infty}^{z}\left(\int_{-\infty}^{\infty} f_{x}(x) f_{y}(u-x) d x\right) d u
$$

Step 2: Differchtiate $F(\cdot)$

$$
\begin{aligned}
f_{z}(z) & =F^{\prime}(z) \\
\begin{array}{c}
\text { (fundanertal) } \\
\text { Theorem }
\end{array} & =\int_{-\infty}^{\infty} f_{x}(x) f_{y}(z-x) d x
\end{aligned}
$$

$\therefore \quad x, y$ an inelepcalent with p.d-f $f_{x}(\cdot)$ and $f y(-1 \quad z=x+y$
then

$$
f_{z}(z)=\int_{-\infty}^{\infty} f_{x}(x) f_{y}(z-x) d x
$$

Statistics

Data - work witt real data
Probability - study of models for (ravelin) experiments when the model is fully

Statistics - Model is not fully known. one tries to infer about the unknown aspects of the model based on obsencel outcomes of experiment
Given: $\quad x_{1}, x_{2}, \ldots x_{n}, \ldots$ it.d observation

Kurtosis and Skewness

Let $\left\{x_{i}: 1 \leq i \leq n\right\}$ be given data set. Then the mean and Standard Deviation, sd, are given by

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \sigma_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

Kurtosis and Skewness coefficients.

$$
\begin{array}{rlr}
\text { Skewness }= & \frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)^{3}, & \text { Kurtosis }=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)^{4} . \\
\downarrow & \vdots \\
& \text { Symmetry of } & \text { Peak of distribution }
\end{array}
$$

\bar{X} - Sample mean is an estimate for true mean of the ordering distribution
σ_{x}^{2} - Sample variance is an estimate for true variance of the onderlsing distribution

Symmetric, Skewed- Left and Right

$$
\text { Skewness }=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)^{3}
$$

- Skewness is a measure of symmetry.
- Negative skewness will imply that the mean $<$ median $<$ mode, and the data distribution is left-skewed.

Positive skewness will imply that the mean $>$ median $>$ mode, and the data distribution is right-skewed.

Symmetric

Symmetric

Left Skewed

Right-Skewed

Right-Skewed

Normal Distribution: Kurtosis and Skewness

Skewness $=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)^{3}, \quad$ Kurtosis $=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)^{4}$.

Skewness 0 indicates that the distribution is symmetric
Kurtosis is a measure of the peak of the distribution.
For standard normal Kurtosis is 3.
If Kurtosis and Skewness coefficients are far from 3 and 0 we can conclude that the data is not normal.

Normal Distribution: Quantiles

If Z is standard Normal random variable then the α-th quantile of Z is denoted by z_{α} where

$$
P\left(Z \leq z_{\alpha}\right)=\alpha, \quad 0<\alpha<1
$$

Let $\left\{x_{i}: 1 \leq i \leq n\right\}$ be given data set then we can order them to get

$$
\left(x_{(1)}, x_{(2)}, \ldots, x_{(n)}\right)
$$

we view $x(k)$ as the $\frac{k}{n+1}$ sample quantile.

Normal Distribution: Quantiles

Another check whether data is normal is to plot

$$
\left(z_{\frac{k}{n+1}}, x_{(k)}\right)
$$

if the plot is a straight line then it indicates that data is normal

Check: if data is normal or not

(1) - Do 68-95-99.7 first check to see if data is like normal or not. Compute
(2) - Skewness $=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)^{3}, \quad$ Kurtosis $=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{\sigma_{x}}\right)^{4}$.

Skewness 0 indicates that the distribution is symmetric Kurtosis is a measure of the peak of the distribution.
For standard normal Kurtosis is 3.
If Kurtosis and Skewness coefficients are far from 3 and 0 we can conclude that the data is not normal.
(3)- Final check whether data is normal is to plot

$$
\left(z_{\frac{k}{n+1}}, x_{(k)}\right)
$$

if the plot is a straight line then it indicates that data is normal

$$
\begin{aligned}
& z \sim N(0,1) \\
& P(-1 \leq z \leq 1) \cong 0.68 \\
& P(-2 \leq z \leq 2) \cong 0.95 \\
& P(-3 \leq z \leq 3) \cong 0.99
\end{aligned}
$$

