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Confidence Intervals

Using the Central Limit Theorem for large n we have
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which is the same as saying
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is called the 95% confidence

interval for µ.
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Confidence Intervals

95% confidence interval for µ is
⇣
�1.96�p

n
+ X̄ , 1.96�p

n
+ X̄

⌘

Meaning: for n large if we did m (large) repeated trials and

computed the above interval for each trial then true mean would

belong to approximately 95% of m intervals calculated.

- Important - Precise meaning.

P(rtI_¥ ⇐ 1.96) I 0.95

/ interpretation



Confidence Intervals

The below is code for finding the confidence interval for a data x .

> cifn = function(x, alpha=0.95){

+ z = qnorm( (1-alpha)/2, lower.tail=FALSE)

+ sdx = sqrt(1/length(x))

+ c(mean(x) - z*sdx, mean(x) + z*sdx)

+ }

i. 0=-1
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Three Confidence Intervals for Normal(0,1)

> x1 = rnorm(100,0,1);y = cifn(x1)

> y

[1] -0.35705304 0.03493976

> x2 = rnorm(100,0,1);z = cifn(x2)

> z

[1] -0.2832489 0.1087439

> x3 = rnorm(100,0,1);w = cifn(x3)

> w

[1] -0.30294682 0.08904598

Does 0 belong to all the three confidence intervals ?



Confidence Intervals Plots

The below is a plot of the three confidence intervals computed in

the previous slide.
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Confidence Intervals : 10 Trials

We generate 10 trials of 100 samples from Normal(0,1) and

compute the confidence intervals using the function defined earlier.

> normaldata = replicate(10, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidata[1,]*cidata[2,]<0

> table(TRUEIN)

TRUEIN

TRUE

10

( 9 , b) 70

I
a. b <o



Confidence Intervals : 10 Trials
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Confidence Intervals: 40 Trials

We generate 10 trials of 100 samples from Normal(0,1) and

compute the confidence intervals using the function defined earlier.

> normaldata = replicate(40, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidata[1,]*cidata[2,]<0

> table(TRUEIN)

TRUEIN

FALSE TRUE

5 35



Confidence Intervals: 40 trials Plot
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Confidence Intervals : 100 Trials

We generate 100 trials of 100 samples from Normal(0,1) and

compute the confidence intervals using the function defined earlier.

> normaldata = replicate(100, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidata[1,]*cidata[2,]<0

> table(TRUEIN)

TRUEIN

FALSE TRUE

5 95



Confidence Intervals : 100 Trials
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Confidence Intervals : 1000 Trials

We generate 1000 trials of 100 samples from Normal(0,1) and

compute the confidence intervals using the function defined earlier.

> normaldata = replicate(1000, rnorm(100,0,1),

+ simplify=FALSE)

> cidata = sapply(normaldata, cifn)

It is easy to check how many of them contain 0.

> TRUEIN = cidata[1,]*cidata[2,]<0

> table(TRUEIN)

TRUEIN

FALSE TRUE

54 946



Confidence Intervals : 1000 Trials
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Confidence Intervals

95% confidence interval for µ is
⇣
�1.96�p

n
+ X̄ , 1.96�p

n
+ X̄

⌘

Meaning: for n large if we did m (large) repeated trials and

computed the above interval for each trial then true mean would

belong to approximately 95% of m intervals calculated.

Thus numerically the above meaning seems to hold for a Normal

population.


