Recall: $(S, \nexists, \mathbb{P})$ [Sample Space]

$$
x \in \mathbb{R}
$$

- Concept of Indeendence
- A, B-erents \equiv independent \equiv

If occurrexue of one erent does Not affect the Probabilits of occurrener of the othee

- Gencralix this to varlon vaciables

Conditional Probability

Consider the experiment of tossing a fair coin three times with sample space $S=\{h h h, h h t, h t h, h t t, t h h, t h t, t t h, t t t\}$.
Let A be the event that there are two or more heads. As all outcomes are equally likely

$$
\begin{aligned}
P(A) & =\frac{\mid\{h h h, h h t, h t h, \text { th }\} \mid}{8} \\
& =.4 / 8=1 / 2
\end{aligned}
$$

Let B be the event that there is a head in the first toss. As above,

$$
\begin{aligned}
P(B) & =\frac{|\{h h h, h h t, h t h, h t t\}|}{8} \\
& =\cdot 4 / 8=1 / 2
\end{aligned}
$$

Now,

$$
P(A \mid B) \longleftarrow \frac{|A \cap B|}{|B|}=\frac{\mid\{\text { hhs, hat, hts } \mid}{|B|}=\frac{3}{4}
$$

Conditional Probability

Let S be a sample space with probability P. Let A and B be two events with $P(B)>0$. Then the conditional probability of A given B written as $P(A \mid B)$ and is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- B has occurred

Suppose we toss a coin three times. Then the sample space

$$
S=\{h h h, h h t, h t h, h t t, \text { th, the, th, } t t t\} .
$$

Let $A \equiv\{$ first toss is head\} ~ a n d ~ $B \equiv\{$ second toss is head?
$A=\{h h h, h h t, h t h, h t t\}$ and $B=\{h h h, h h t, t h h, t h t\}$.

- Equally likely out core experiment
- $P(A)=\frac{1}{2} \quad P(B)=\frac{1}{2}$
- $P(A \mid B)=\frac{1}{2} \quad P\left(A \mid B^{c}\right)=\frac{1}{2} \quad($ Sec below $)$

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{|A \cap B|}{|B|}=\frac{2}{4}=\frac{1}{2} \\
& P\left(A \mid B^{C}\right)=\frac{P(A \cap B C)}{P(B C)}=\cdots=\frac{1}{2} \\
& P(A)=P(A \mid B)=P\left(A \mid B^{C}\right)
\end{aligned}
$$

1.e. The orccurrence thos no eftect on the probabiluts of A.

Ex:- $\quad P\left(B \mid A^{c}\right)=P(B)=P(B \mid A)$

- $A \& B$ are Indepenelet Eventsif

$$
\begin{aligned}
& P(A \mid B)=P(A) \Leftrightarrow \frac{P(A \cap B)}{P(B)}=P(A) \\
& \Leftrightarrow P(B)>0
\end{aligned} \Leftrightarrow P(A \cap B)=P(A) P(B)
$$

Independence

Definition of Independence of Events :- :

- Two events A and B are independent if

$$
P(A \cap B)=P(A) P(B) . \quad-\} \begin{aligned}
& \text { one } \\
& \text { equation }
\end{aligned}
$$

- A finite collection of events $A_{1}, A_{2}, \ldots, A_{n}$ is mutually independent if
$\left.*-P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right)=P\left(E_{1}\right) P\left(E_{2}\right) \ldots P\left(E_{n}\right) .-\right\} \begin{gathered}2^{n} \\ \text { equations }\end{gathered}$
whenever E_{j} is either A_{j} or A_{j}^{c}.

Remark:
$1 \leqslant i \leqslant n$
Mutual
*) ensures that
non-occurren.
Does not attest Probables d
not the \# same as
Pairwise $\left\{A_{i}, A_{j}\right\}_{i \neq j}$ - each pare is welpendtr $1 \leq i \leq n$
(A) $n=2$

$$
\begin{aligned}
& P(A \cap B)=P(A) P(B) \\
& \text { Ex } \Leftrightarrow \quad P\left(A \cap B^{c}\right)=P(A) P\left(B^{c}\right) \\
& \Leftrightarrow \quad P\left(A(\cap B)=P\left(A^{C}\right) P(B)\right. \\
& \Leftrightarrow \quad P\left(A^{C} \cap B^{\prime}\right)=P(A C) P\left(B^{\prime}\right)
\end{aligned}
$$

$n \geqslant 3$ - one reach to be courful

$$
\left[\begin{array}{l}
\text { not } \\
\text { enough }
\end{array}\right] \leftarrow P\left(A_{1} \cap A_{2} A \cdots A_{\rho}\right)=\prod_{i=1}^{n} P\left(A_{1}\right)
$$

(B) Its tempting to say
$A_{1} A_{c}, A_{3}$ an mutually independent if A_{1}, A_{L} au independent pairwise A_{1}, A_{3} are independent indeperadest $A A_{2} A_{3}$ and J enough A_{2}, A_{5} are independent

See Example 1.4.2 in book.

Independence

Definition of Independence for Random Variables:- :

- Two random variables X and Y are independent if $(X \in A)$ and $(Y \in B)$ are independent for every event A in the range of X and every event B in the range of Y
- A finite collection of random variables $X_{1}, X_{2}, \ldots, X_{n}$ is mutually independent if the sets $\left(X_{j} \in A_{j}\right)$ are mutually independent for all events A_{j} in the ranges of the corresponding X_{j}.
- An arbitrary collection of random variables X_{t} where $t \in I$ for some index set I is mutually independent if every finite sub-collection is mutually independent.

Dependent Random Variables

Let $X \sim \operatorname{Uniform}(\{1,2\})$ and let Y be the number of heads in X tosses of a fair coin.
no heats

1 heal
in (tor)

$$
\lessdot P(Y=1 \mid X=1)=\frac{1}{2}
$$

$$
Y \mid X=1 \sim \text { Beinonll. }\left(\frac{1}{2}\right)
$$

Dependent Random Variables

If $X=2$ then Y is the number of heads in two flips of a fair coin then

- head in 2tosses $\quad P(Y=0 \mid X=2)=1 / 4$

1 head ztowes $P(Y=1 \mid X=2)=1 / 2$
2 head tosses
in 2to $P(Y=2 \mid X=2)=1 / 4$

Therefore $Y \mid X=2 \sim$ Binomial $\left(2, \frac{\int_{2}}{2}\right)$

Dependent Random Variables

Range $(X)=\{\mathbf{1}, \mathbf{2}\}$ and Range $(Y)=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$.
To find the joint distribution of X and Y we must calculate the probabilities of each possibility. In this case the values may be obtained using the definition of conditional probability. For instance,

$$
\begin{aligned}
& P(X=1, Y=0)=P(\underbrace{Y=0 \mid X}_{\substack{\text { o heads in } \\
\text { I toss }}}=1) \cdot P(X=1)=\frac{1}{2} \cdot \frac{1}{2}=1 / 4 \\
& \text { and } \\
& P(X=1, Y=2)=P(\underbrace{Y=2 \mid X}_{\substack{\text { heads } \\
\text { |toss }}}=1) \cdot P(X=1)=0 \cdot \frac{1}{2}=0
\end{aligned}
$$

Dependent Random Variables

The entire joint distribution $P(X=a, Y=b)$ is described by the following chart.

$P(X=x, Y=4)$	$X=1$	$X=2$
$Y=0$	$1 / 4$	$1 / 8$
$Y=1$	$1 / 4$	$1 / 4$
$Y=2$	0	$1 / 8$

Dependent Random Variables

$$
\frac{P(x=1, y=0)}{P(y=0)}
$$

There will be three different conditional distributions depending on whether $Y=0, Y=1$, or $Y=2$.

$$
P(X=1 \mid Y=0)=\frac{P(Y=0 \mid X=1) \cdot P(X=1)}{P(Y=0)}
$$

$$
\begin{aligned}
\left(\begin{array}{l}
\text { Ex to do } \\
\text { from previous } \\
\text { table }
\end{array}\right. & =\frac{(y / 2)(1 /)}{p(y=0 \mid x=1) p(x=1)+p(y=0 \mid x=L)} p(x=6)
\end{aligned}
$$

$$
P(X=2 \mid Y=0)=. \quad \cdots \cdots \quad E_{x}=\cdots=1 / 3
$$

Dependent Random Variables

Joint distribution of x and Y

	$X=1$	$X=2$	Sum	
$Y=0$	$1 / 4$	$1 / 8$	$3 / 8$	
$Y=1$	$1 / 4$	$1 / 4$	$1 / 2$	
$Y=2$	0	$1 / 8$	$1 / 8$	
Sum	$1 / 2$	$1 / 2$		
$P(Y=0)$				

$$
\begin{array}{rr}
P(X=1, Y=0)=1 / 4 \text { while } \quad P(X=1) \cdot P(Y=0)= \\
\frac{1}{2} \cdot 3 / 8=3 / 16
\end{array}
$$

$3 / 16 \neq 1 / 4 \Rightarrow x$ and Y au r NOT independent

Column sum:

$$
\left.\begin{array}{l}
P(x=1, y=0) \\
+P(x=1, y=1) \\
+P(x=1, y=2)
\end{array}\right\}=P(x=1)
$$

Joint Distribution

If X and Y are discrete random variables, the "joint distribution" of X and Y is the probability Q on pairs of values in the ranges of X and Y defined by

$$
Q((a, b))=P(X=a, Y=b)
$$

The definition may be expanded to a finite collection of discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ for which the joint distribution of all n variables is the probability defined by

$$
Q\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=P\left(X_{1}=a_{1}, X_{2}=a_{2}, \ldots, X_{n}=a_{n}\right)
$$

Conditional Distribution

Let X be a random variable on a sample space S and let $A \subset S$ be an event such that $P(A)>0$. Then the probability Q described by

$$
Q(B)=P(X \in B \mid A)
$$

is called the "conditional distribution" of X given the event A.

$$
\text { Example: } \begin{aligned}
A & =\langle X=1 t \quad \text { rio was } Y \\
Y \mid A & \sim \text { Becroull. }(1 / 2)
\end{aligned}
$$

Conditional Expectation and Conditional Variance

Let $X: S \rightarrow T$ be a discrete random variable and let $A \subset S$ be an event for which $P(A)>0$.

The "conditional expected value" of X given A is

$$
E[X \mid A]=\sum_{t \in T} t \cdot P(X=t \mid A)
$$

and the "conditional variance" of X given A is

$$
\operatorname{Var}[X \mid A]=E\left[(X-E[X \mid A])^{2} \mid A\right] .
$$

Recall $\quad X$ - Discuete r.u.

$$
\begin{gathered}
\operatorname{Ranbe}(x)=T \\
E[x]=\sum_{t \in T} t \mathbb{P}(x=t) \\
\operatorname{Var}[x]=E\left[(x-E[x])^{2}\right]
\end{gathered}
$$

Example:-
$x \sim$ uniform $(2,23) \quad y_{\sim}$ Binomial $\left(x, \frac{1}{2}\right)$

$$
\begin{aligned}
& E(y \mid x=1)=\frac{1}{2} \\
& E(y \mid x=2)=1
\end{aligned}
$$

$$
\begin{aligned}
E[y]= & 1 p(y=1)+2 \cdot p(y=2) \\
= & 1 \cdot \frac{1}{2}+2 \cdot 1 / 8 \\
= & 3 / 4
\end{aligned}
$$

