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Example : - - Rolla Die

- Possible outcomes = { 1,434,56 }-
- what is the average value that shows up ?
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Expectation

Let X : S ! T be a discrete random variable (so T is countable).

Then the expected value (or average) of X is written as E [X ] and

is given by

E [X ] =
X

t2T
t · P(X = t)

provided that the sum converges absolutely. In this case we say

that X has“finite expectation”.

• If the sum diverges to ±1 we say the random variable has

infinite expectation.

• If the sum diverges, but not to infinity, we say the expected

value is undefined.

- Refer to PSWEUR

chapter 4 for
Examples
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Properties of Expected Value

Suppose that X and Y are discrete random variables, both with

finite expected value and both defined on the same sample space

S . If a and b are real numbers then

(1) E [aX ] = aE [X ];

(2) E [X + Y ] = E [X ] + E [Y ]; and

(3) E [aX + bY ] = aE [X ] + bE [Y ].

(4) If X � 0 then E [X ] � 0.

}
From
Definition

of

Expected value .



Variance

Let X : S ! T be a discrete random variable with finite expected

value. Then the variance of the random variable is written as

Var [X ] and is defined as

Var [X ] = E [(X � E [X ])2] =
X

t2T
(t � E [X ])2)P(X = t)

• The standard deviation of X is written as SD[X ] and is

defined as

SD[X ] =
p
Var [X ]

a
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✗
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Interpretation of Variance

• If X has a high probability of being far away from E [X ] the

variance will tend to be large, while if X is very near E [X ]

with high probability the variance will tend to be small.

• If we were to associate units with the random variable X (say

meters), then the units of Var [X ] would be meters2 and the

units of SD[X ] would be meters.

• Informally we will view the standard deviation as a typical

distance from average.

• It is possible that Var [X ] and SD[X ] could be infinite even if

E [X ] is finite – meaning that the random variable has a clear

average, but is so spread out that any finite number

underestimates the typical distance of the random variable

from its average.



Standardising Random Variables

• A standardized random variable X is one for which

E [X ] = 0 and Var [X ] = 1.

• Let X be a discrete random variable with finite expected value

and finite, non-zero variance. Then Z = X�E [X ]
SD[X ] is a

standardized random variable.

i. Eez] = F- [ ×-s☐E{¥-] = E¥ ⇒

var [23 = F- [2- F-c⇒5=E¥☐[ =L



E×ampk_ ; ✗ ~ Uniform 11,434,563

① ( ✗=k) = Yf k= 42,345,6

ECX] - 1+2+374,45-+6 = 3.5

( In my
sample ink)
- 3- 55

vortex] = £1k -3-55.1
1<=1 To

= C- 3.55 c- (2-3.55+(3-3.5)=1 . . .

6

= 12.55 + 11-55 + @ -55+10-+5+11 .# +12-55

6

= 2.91666 . . . ( In my sample in 5h

- 2. 82



Sampling from a given distribution

• we can use the sample function.

• takes a sample of the specified size (specified by size) from

the elements of x using either with or without replacement

(specified by replace). The optional prob argument can be

used to give a vector of weights for obtaining the elements of

the vector being sampled.

> x = c(1,2,3,4,5,6)

> probx= c(1/6,1/6,1/6,1/6,1/6,1/6)

> Rolls=sample(x, size=1800, replace=T, prob=probx)



Uniform(1,2,3,4,5,6)

> mean(Rolls)

[1] 3.501111

> var(Rolls)

[1] 3.001666

r



Sums of Rolls

Suppose we wish to simulate in R the experiment that we did in

class of Rolling a die and noting down its sum. We can use the

sample , matrix and apply.

> x = c(1,2,3,4,5,6)

> probx= c(1/6,1/6,1/6,1/6,1/6,1/6)

> Rolls=sample(x, size=1500, replace=T, prob=probx)

> Rollm=matrix(Rolls, 5)

> # above creates a matrix 5 columns and 300 Rows

> Rollsums = apply(Rollm, 2, sum)



Sums of Rolls
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