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Expectation

Let X : S — T be a discrete random variable (so T is countable).
Then the expected value (or average) of X is written as E[X] and

is given by

EX]=) t-P(X=t)

teT

provided that the sum converges absolutely. In this case we say

that X has “finite expectation”. - Reley b PSWEVE
e |f the sum diverges to +00 we say the random variable ilzi\_s
S . chaghee & Tof
infinite expectation. (’\- 2 camp\te

e |f the sum diverges, but not to infinity, we say the expected

value is undefined.
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Properties of Expected Value

Suppose that X and Y are discrete random variables, both with
finite expected value and both defined on the same sample space

S. If a and b are real numbers then

ElaX] = aE[X]; Paoe
E[X + Y] = E[X] + E[Y]; and Pefi mbton
E[aX + bY] = aE[X] + bE[Y]. 4}:3;5 2 ek,

If X >0 then E[X] > 0.



Variance

Let X : S — T be a discrete random variable with finite expected
value. Then the variance of the random variable is written as
Var[X] and is defined as

Var[X] = E[(X — E[X]Y2] = S(¢ - EIX]?IP(X = t)
teT

e The standard deviation of X is written as SD[X] and is

defined as

SD[X] = +/ Var[X]
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Interpretation of Variance

e If X has a high probability of being far away from E[X] the
variance will tend to be large, while if X is very near E[X]

with high probability the variance will tend to be small.

e If we were to associate units with the random variable X (say
meters), then the units of Var[X] would be meters® and the
units of SD[X] would be meters.

e Informally we will view the standard deviation as a typical
distance from average.

e It is possible that Var[X] and SD[X] could be infinite even if
E[X] is finite — meaning that the random variable has a clear
average, but is so spread out that any finite number
underestimates the typical distance of the random variable

from its average.



Standardising Random Variables

e A standardized random variable X is one for which

E[X]=0 and Var[X]=1.

e Let X be a discrete random variable with finite expected value

and finite, non-zero variance. Then Z = );B—‘[:)[()]q is a
standardized random variable.
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Sampling from a given distribution

e we can use the sample function.

o takes a sample of the specified size (specified by size) from
the elements of x using either with or without replacement
(specified by replace). The optional prob argument can be
used to give a vector of weights for obtaining the elements of
the vector being sampled.

>x =c¢(1,2,3,4,5,6)
> probx= c(1/6,1/6,1/6,1/6,1/6,1/6)
> Rolls=sample(x, size=1800, replace=T, prob=probx)



Uniform(1,2,3,4,5,6)

> mean(Rolls)
[1] 3.501111
> var(Rolls)
[1] 3.001666



Sums of Rolls

Suppose we wish to simulate in R the experiment that we did in
class of Rolling a die and noting down its sum. We can use the

sample , matrix and apply.

x = ¢(1,2,3,4,5,6)

probx= c(1/6,1/6,1/6,1/6,1/6,1/6)

Rolls=sample(x, size=1500, replace=T, prob=probx)
Rollm=matrix(Rolls, 5)

# above creates a matrix 5 columns and 300 Rows

V V V V VvV V

Rollsums = apply(Rollm, 2, sum)
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