Expectation

Let $X: S \rightarrow T$ be a discrete random variable (so T is countable). Then the expected value (or average) of X is written as $E[X]$ and is given by

$$
E[X]=\sum_{t \in T} t \cdot P(X=t)
$$

provided that the sum converges absolutely. In this case we say that X has "finite expectation".

- If the sum diverges to $\pm \infty$ we say the random variable has infinite expectation.
- If the sum diverges, but not to infinity, we say the expected value is undefined.

Properties of Expected Value

Suppose that X and Y are discrete random variables, both with finite expected value and both defined on the same sample space
S. If a and b are real numbers then

$$
\begin{aligned}
& E[a X]=a E[X] ; \\
& E[X+Y]=E[X]+E[Y] ; \quad \text { and } \\
& E[a X+b Y]=a E[X]+b E[Y] \\
& \text { If } X \geq 0 \text { then } E[X] \geq 0 .
\end{aligned}
$$

Variance

Let $X: S \rightarrow T$ be a discrete random variable with finite expected value. Then the variance of the random variable is written as $\operatorname{Var}[X]$ and is defined as

$$
\left.\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=\sum_{t \in T}(t-E[X])^{2}\right) P(X=t)
$$

- The standard deviation of X is written as $S D[X]$ and is defined as

$$
S D[X]=\sqrt{\operatorname{Var}[X]}
$$

Interpretation of Variance

- If X has a high probability of being far away from $E[X]$ the variance will tend to be large, while if X is very near $E[X]$ with high probability the variance will tend to be small.
- If we were to associate units with the random variable X (say meters), then the units of $\operatorname{Var}[X]$ would be meters ${ }^{2}$ and the units of $S D[X]$ would be meters.
- Informally we will view the standard deviation as a typical distance from average.
- It is possible that $\operatorname{Var}[X]$ and $S D[X]$ could be infinite even if $E[X]$ is finite - meaning that the random variable has a clear average, but is so spread out that any finite number underestimates the typical distance of the random variable from its average.

Standardising Random Variables

- A standardized random variable X is one for which

$$
E[X]=0 \quad \text { and } \quad \operatorname{Var}[X]=1 .
$$

- Let X be a discrete random variable with finite expected value and finite, non-zero variance. Then $Z=\frac{X-E[X]}{S D[X]}$ is a standardized random variable.

Sampling from a given distribution

- we can use the sample function.
- takes a sample of the specified size (specified by size) from the elements of x using either with or without replacement (specified by replace). The optional prob argument can be used to give a vector of weights for obtaining the elements of the vector being sampled.
$>\mathrm{x}=\mathrm{c}(1,2,3,4,5,6)$
> probx= $c(1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6)$
> Rolls=sample(x, size=1800, replace=T, prob=probx)

Uniform(1,2,3,4,5,6)

> mean(Rolls)
[1] 3.511111
> var(Rolls)
[1] 2.80588

Binomial $(10,0.5)$

Binomial $(10,0.1)$

Binomial $(10,0.9)$

Sums of Rolls

