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Probability & statistics wilt
example , using R.

Experiment 1 : Toss a coin 5 times

✗ = # of heads obtained .

oh = set of all possible outcomes
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7- = Events

A- = { we obtained 3 It in 5 Tosses ]-

P - Probability of each event
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✗ - Random variable ✗ : r → B

✗ ( { no , we, . . wst ) = # { if wi=H7

Re-unite : A = { ✗ =3 }



(Sample Space)

• A sample space S is a set.

• The elements of the set S will be called“outcomes”and should

be viewed as a listing of all possibilities that might occur.

• We will call the process of actually selecting one of these

outcomes an“experiment”.

(Temporary Definition of Event) Given a sample space S , an

“event” is any subset E ⇢ S .

Previous slide used r

r

1- =
.

4 F- : F- C- S3 :=7

• A = { ( H, H
,
H
,
T
,
T )
,

C H
,
T
,
H
,
T
,
H ) -

-
. ( T ,

T
,
H
,
H
,
H)}

previous example .



(Probability Space Axioms)

Let S be a sample space and let F be the collection of all events.

A“probability” is a function P : F ! [0, 1] such that

(1) P(S) = 1; and

(2) If E1,E2, ... are a countable collection of disjoint events

(that is, Ei \ Ej = ? if i 6= j), then
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Random Variable

• A“discrete random variable” is a function X : S ! T where S

is a sample space equipped with a probability P, and T is a

countable (or finite) subset of the real numbers.

• P generates a probability on T and since it is a discrete space,

the distribution may be determined by knowing the likelihood

of each possible value of X .

• fX : T ! [0, 1] given by

fX (t) = P(X = t)

referred to as a“probability mass function”.

Ek : - X : r -193 ✗ = # heads in 5- tosses
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Binomial Distribution

X ⇠ Binomial(n, p): Let 0  p  1 and let n � 1 be an integer. If

X is a random variable taking values in {0, 1, . . . , n} having a

probability mass function

P(X = k) =

✓
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k
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for all 0  k  n, then X is a binomial random variable with

parameters n and p. We have seen that such a quantity describes

the number of successes in n Bernoulli trials.

F-xapen.net# : ✗~ Binomial (5,1-2)

Experiment 1- : H = Success

T = failure


