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(Sample Space)
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e A sample space S is a set.

e The elements of the set S will be called “outcomes” and should

be viewed as a listing of all possibilities that might occur.

o We will call the process of actually selecting one of these

outcomes an “experiment”.

35 (Temporary Definition of Event) Given a sample space S, an
“event” is any subset E C S. AE -~ mesH=
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(Probability Space Axioms)
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Let S be a sample space and let F be the collection of all events.

A “probability” is a function P : F — [0, 1] such that
P(S) =1; and
If E1, Es, ... are a countable collection of disjoint events
(thatis, E;NEj = @ if i # j), then

P(JE) =D P(E). (1)
j=1 j=1
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Random Variable
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e A “discrete random variable” is a function X : S — T where S

is a sample space equipped with a probability P, and T is a

countable (or finite) subset of the real numbers.

e P generates a probability on T and since it is a discrete space,
the distribution may be determined by knowing the likelihood

of each possible value of X. -
. Renge (X) =T
e fx: T —[0,1] given by

referred to as a “probability mass function”.
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Binomial Distribution
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X ~ Binomial(n, p): Let 0 < p <1 and let n > 1 be an integer. If
X is a random variable taking values in {0,1,...,n} having a
probability mass function

POx= 1) = ()1 o

for all 0 < k < n, then X is a binomial random variable with
parameters n and p. We have seen that such a quantity describes
the number of successes in n Bernoulli trials.
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