Please upload work sheet on moodle
Reterna:- Chapter 1,43 in - Probability E statistics with Experiment 1 : Toss a coin s times $X=\#$ of heads obtained.
$\Omega=$ set of all possible outcomes

$$
\left.\begin{array}{rl}
& =\{(H, H, H, H, H),(T, H, H, H, H), \cdots \cdots
\end{array}\right\}
$$

$A=\{$ we obtainal $3 H$ in 5 Tosses $\}$.
\mathbb{P} - Probability of each event

$$
\mathbb{P}(A)=?
$$

mutual's erclasire
ways

$$
\mathbb{P}(A)=S_{c_{3}}\left(\frac{1}{2}\right)^{5}
$$

X - Rancor variable $X: \Omega \rightarrow \mathbb{R}$

$$
x\left(\left\{w_{1}, w_{2}, . . w_{5}\right\}\right)=\#\left\{i \mid w_{i}=H\right\}
$$

Rewrite: $\quad A=\{X=3\}$
(Sample Space)
Previous slide used Ω

- A sample space S is a set.
- The elements of the set S will be called "outcomes" and should be viewed as a listing of all possibilities that might occur.
- We will call the process of actually selecting one of these outcomes an "experiment".
$J \equiv$ (Temporary Definition of Event) Given a sample space S, an "event" is any subset $E \subset S . \quad\{E: E \subseteq S 3:=7$
- $A=\{(H, H, H, T, T),(H, T, H, T, H) \cdots(T, T, H, H, H\}$ previous example.
(Probability Space Axioms)

Let S be a sample space and let \mathcal{F} be the collection of all events.
A "probability" is a function $P: \mathcal{F} \rightarrow[0,1]$ such that
$P(S)=1$; and
If E_{1}, E_{2}, \ldots are a countable collection of disjoint events (that is, $E_{i} \cap E_{j}=\varnothing$ if $i \neq j$), then

$$
\begin{equation*}
P\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} P\left(E_{j}\right) \tag{1}
\end{equation*}
$$

$\Rightarrow A$ and B are disjoint even 5

$$
P(A \cup B)=\mathbb{P} P(A)+P(B)
$$

Example:- $X: \Omega \rightarrow B \quad X=\#$ head in 5 tosses

- A "discrete random variable" is a function $X: S \rightarrow T$ where S is a sample space equipped with a probability P, and T is a countable (or finite) subset of the real numbers.
- P generates a probability on T and since it is a discrete space, the distribution may be determined by knowing the likelihood of each possible value of X.
- $f_{X}: T \rightarrow[0,1]$ given by

$$
f_{X}(t)=P(X=t)
$$

referred to as a "probability mass function".

$$
T=\{0,1,2,3,4,5\} \quad\left(P(x=3)=S_{C 3}\left(\frac{1}{2}\right)^{5}\right.
$$

Binomial Distribution
Experiment 1: $\quad x \sim \operatorname{Binomial}\left(5, \frac{1}{2}\right)$
$X \sim \operatorname{Binomial}(n, p):$ Let $0 \leq p \leq 1$ and let $n \geq 1$ be an integer. If X is a random variable taking values in $\{0,1, \ldots, n\}$ having a probability mass function

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for all $0 \leq k \leq n$, then X is a binomial random variable with parameters n and p. We have seen that such a quantity describes the number of successes in n Bernoulli trials.

Expecionent 1:

$$
\begin{aligned}
& H \equiv \text { Socles) } \\
& T \equiv \text { failure }
\end{aligned}
$$

