Please upled work sheet an moodle
Referration Chapter 1,23 in - Publicity & statistic usit
Experiment 1: Toss a coin 5 times

$$X = H$$
 of heads obtained.
 $P = 5 \text{ set}$ of all possible outcomes
 $= \langle (H, H, H, H, H), (T, H, H, H, H), \dots, \rangle$
 $f = E \text{ verts}$
 $A = \langle \text{ we obtained 3 H in 5 Tosses } \}$
 $P = Publicity of each event$
 $P(A) = ?$
 $P(A) = ?$
 $P(A) = (\frac{1}{2})^3 (\frac{1}{2})^2$
 $P(A) = Sc_5 (\frac{1}{2})^5$
 $X = Random vertable $X: R \to TR$
 $Y(\{w, w_1, \dots, w_T\}) = H\{i \} \text{ with } H$
 $Rewrite: A = d(X = 3]$$

(Sample Space)

Previous Slide Used r

• A sample space S is a set.

- The elements of the set S will be called "outcomes" and should be viewed as a listing of all possibilities that might occur.
- We will call the process of actually selecting one of these outcomes an "experiment".

 $\begin{array}{l} \textbf{J}_{\Xi} \quad (\text{Temporary Definition of Event}) \text{ Given a sample space } S, \text{ an} \\ \text{"event" is any subset } E \subset S. \qquad \qquad \textbf{X} \in \Sigma \subseteq S := \textbf{J} \\ \end{array}$

• A={(H, H, H, T, T), (H, T, H, T, H)-... (T, T, H, H, H) Previous example.

(Probability Space Axioms)

Example: - X: ~ -) TB X = # heads in 5 tosses

- A "discrete random variable" is a function X : S → T where S is a sample space equipped with a probability P, and T is a countable (or finite) subset of the real numbers.
- P generates a probability on T and since it is a discrete space, the distribution may be determined by knowing the likelihood of each possible value of X.

•
$$f_X: T \rightarrow [0,1]$$
 given by

$$Range(X) = T$$

$$f_X(t) = P(X = t)$$

referred to as a "probability mass function".

 $T = \{0, 1, 2, 3, 4, 5\}$ $P(X=3) = S_{(3)} \left(\frac{1}{2}\right)^{5}$

 $X \sim \text{Binomial}(n, p)$: Let $0 \le p \le 1$ and let $n \ge 1$ be an integer. If X is a random variable taking values in $\{0, 1, \ldots, n\}$ having a probability mass function

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

for all $0 \le k \le n$, then X is a binomial random variable with parameters n and p. We have seen that such a quantity describes the number of successes in n Bernoulli trials.