(Sample Space)
Recall:- Toss a coin $n=5$ times

$$
S=\alpha H, T\}^{n}
$$

- A sample space S is a set.
- The elements of the set S will be called "outcomes" and should be viewed as a listing of all possibilities that might occur.
- We will call the process of actually selecting one of these outcomes an "experiment".
(Temporary Definition of Event) Given a sample space S, an "event" is any subset $E \subset S$.

Example: $A=\{$ s Head, in 5 Tosses $\}$

(Probability Space Axioms)

Probability \longleftrightarrow Relative frequency
we will make this connection precise later in this court.
Let S be a sample space and let \mathcal{F} be the collection of all events.
A "probability" is a function $P: \mathcal{F} \rightarrow[0,1]$ such that

$$
P(S)=1 ; \text { and }
$$

If E_{1}, E_{2}, \ldots are a countable collection of disjoint events
(that is, $E_{i} \cap E_{j}=\varnothing$ if $i \neq j$), then

$$
\begin{equation*}
P\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} P\left(E_{j}\right) . \tag{1}
\end{equation*}
$$

$\rightarrow \mathbb{P}(A \cup B)=\mathbb{P}(A)+P(B)$ if $A \cap B=\phi$.

Random Variable

$X=\#$ of Heads in $n=5$ tosues.

- A "discrete random variable" is a function $X: S \rightarrow T$ where S is a sample space equipped with a probability P, and T is a countable (or finite) subset of the real numbers.
- P generates a probability on T and since it is a discrete space, the distribution may be determined by knowing the likelihood of each possible value of X.
- $f_{X}: T \rightarrow[0,1]$ given by

$$
f_{X}(t)=P(X=t)
$$

referred to as a "probability mass function".

Binomial Distribution

$X \sim \operatorname{Binomial}(n, p)$: Let $0 \leq p \leq 1$ and let $n \geq 1$ be an integer. If X is a random variable taking values in $\{0,1, \ldots, n\}$ having a probability mass function

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for all $0 \leq k \leq n$, then X is a binomial random variable with parameters n and p. We have seen that such a quantity describes the number of successes in n Bernoulli trials.

- Each toss as a trial $\begin{gathered}\binom{\text { Bernoulli }}{\text { Trial }}\end{gathered}$ Tail, - failure

Plotting Binomial Probabilities
Please try this on R-studio or R-console or..

$$
\begin{aligned}
& \begin{array}{l}
x \quad 0,1,2,3,4,5 \\
>x<-0: 5 \\
>\text { plot }(x, \text { dbinom }(x, \text { size }=5 \text {, prob=.5) }
\end{array} \\
& +\left\{\begin{array}{l}
\text { main='Binomial Distribution }(n=5, p=0.5) ', ~
\end{array}\right. \\
& +\{y l a b=' P r o b a b i l i t y ', \\
& +\quad x l a b=' \# \text { of Heads', } \\
& +\quad \text { lwd=3) }
\end{aligned}
$$

Plotting Binomial Probabilities

Binomial Distribution ($\mathrm{n}=5, \mathrm{p}=0.5$)

X-outcome of fair die roll
Y be the number of heads in X coin flips.
-What is the distribution of X ?

$$
\begin{aligned}
T:=\operatorname{Range}(x) & =\{1,2,3,4,5,6\} \\
f_{x}: & T \rightarrow[0,1] \\
& f_{x}(t)=\mathbb{P}(x=t)=\frac{1}{6} \\
& \forall t \in T
\end{aligned}
$$

Equally likely out core experionent S - sample spar ; $|S|<\infty$ $A \subseteq S$

$$
\mathbb{P}(A)=\frac{|A|}{|S|} \leftarrow \begin{aligned}
& \text { Equally } \\
& \text { likals o. }
\end{aligned}
$$ libels outshone

X-outcome of fair die roll
Y be the number of heads in X coin flips.
-What is the distribution of $(Y \mid X=n)$ for $n=1, \ldots 5 ?, 6$?
Given $X=0$

- what values Y can assure?
- What probabilities dos assign to there values?
- Conditional Probability
$x=4$ ie. - Roll of the die $\equiv 4$
- Toss a fair coin 4 times
$y=\#$ of head in 4 tosses.

$$
\begin{aligned}
\operatorname{Range}(y \mid x=4) & =\{0,1,2,3,4\} \\
\mathbb{P}(y & =k \mid x=4) \quad k \in\{0,1,2,3,4\} \\
& ={ }^{4} c_{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{4-k}
\end{aligned}
$$

In general:-
$X=n$ Then $Y \mid x=n$ has:

$$
\begin{aligned}
& \text { Range }(Y \mid X=n)=\{0,1, \ldots, n\} \\
& \mathbb{P}(Y=k \mid X=n)={ }^{n}{ }_{c_{k}}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{n-k} \\
& k \in\left\{0,1, \ldots, n^{n}\right.
\end{aligned}
$$

Conditional distirbution of

$$
y \mid x=n \sim \text { Binomial }\left(n, \frac{1}{2}\right)
$$

Conditional Probability

Let S be a sample space with probability P. Let A and B be two events with $P(B)>0$. Then the conditional probability of A given B written as $P(A \mid B)$ and is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} . \equiv\left\{\begin{array}{c}
\text { Derive this } \\
\text { ine pe lilals } \\
\text { Equally liel } \\
\text { out come } \\
\text { Experinent } \\
\text { Sot ue }
\end{array}\right.
$$

X-outcome of fair die roll
Y be the number of heads in X coin flips.
-What is the conditional probability

$$
\mathbb{P}(x=1 \quad \mid y=0)=?
$$

From definition:

$$
\begin{aligned}
& \text { From detrition: } \\
& \begin{aligned}
\mathbb{P}(x=1 \mid y=0) & =\frac{\mathbb{P}(x=1, y=0)}{\mathbb{P}(y=0)}=\frac{\mathbb{P}(y=0, x=1)}{\mathbb{P}(y=0)} \\
& \begin{aligned}
\mathbb{P}(y=0, x=1) & =\mathbb{P}(y=0 \mid x=1) \mathbb{P}(x=1) \\
& =1 / 2 \\
& =1 / 12
\end{aligned}
\end{aligned}
\end{aligned}
$$

Set op the experiment "Conditionally"

- Roll once die - outcome is X
- Toss a fair coin x times
$y=W$ of Heads.

$$
\{Y=0\}=\bigcup_{i=1}^{6}\{Y=0, x=i\}
$$

\longrightarrow Disjoint union.

$$
\mathbb{P}(y=0)=\mathbb{P}\left(\bigcup_{i=1}^{6}\{y=0, x=i\}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Axiom (2) } \\
\text { of } \\
\text { Probabilus }
\end{array}=\sum_{i=1}^{b} \mathbb{P}(Y=0, X=i)
\end{aligned}
$$

$$
\therefore \quad \mathbb{P}(X=1 \mid Y=0)=\frac{1 / 12}{1 / 6 \sum_{i=1}^{6}(Y / 2)^{i}}
$$

Bayes Theorem

Example :-,
Theorem
Suppose A is an event, $\left\{B_{i}: 1 \leq i \leq n\right\}$ are a collection of disjoint events whose union contains all of A. Further assume that $P(A)>0$ and $P\left(B_{i}\right)>0$ for all $1 \leq i \leq n$. Then for any $1 \leq i \leq n$,

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{j=1}^{n} P\left(A \mid B_{j}\right) P\left(B_{j}\right)} .
$$

