(Sample Space)

- A sample space S is a set.
- The elements of the set S will be called "outcomes" and should be viewed as a listing of all possibilities that might occur.
- We will call the process of actually selecting one of these outcomes an "experiment".
(Temporary Definition of Event) Given a sample space S, an "event" is any subset $E \subset S$.

(Probability Space Axioms)

Let S be a sample space and let \mathcal{F} be the collection of all events.
A "probability" is a function $P: \mathcal{F} \rightarrow[0,1]$ such that

$$
P(S)=1 ; \text { and }
$$

If E_{1}, E_{2}, \ldots are a countable collection of disjoint events
(that is, $E_{i} \cap E_{j}=\varnothing$ if $i \neq j$), then

$$
\begin{equation*}
P\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} P\left(E_{j}\right) . \tag{1}
\end{equation*}
$$

Random Variable

- A "discrete random variable" is a function $X: S \rightarrow T$ where S is a sample space equipped with a probability P, and T is a countable (or finite) subset of the real numbers.
- P generates a probability on T and since it is a discrete space, the distribution may be determined by knowing the likelihood of each possible value of X.
- $f_{X}: T \rightarrow[0,1]$ given by

$$
f_{X}(t)=P(X=t)
$$

referred to as a "probability mass function".

Binomial Distribution

$X \sim \operatorname{Binomial}(n, p):$ Let $0 \leq p \leq 1$ and let $n \geq 1$ be an integer. If X is a random variable taking values in $\{0,1, \ldots, n\}$ having a probability mass function

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for all $0 \leq k \leq n$, then X is a binomial random variable with parameters n and p. We have seen that such a quantity describes the number of successes in n Bernoulli trials.

Plotting Binomial Probabilities

$>x<-0: 5$
$>\operatorname{plot}(x, d b i n o m(x, s i z e=5, p r o b=.5)$,
$+\quad$ type='h',
$+\quad$ main='Binomial Distribution ($\mathrm{n}=5, \mathrm{p}=0.5$)',

+ ylab='Probability',
$+\quad \mathrm{xlab}=' \#$ of Heads',
$+\quad$ lwd=3)

Plotting Binomial Probabilities

Binomial Distribution ($\mathrm{n}=5, \mathrm{p}=0.5$)

Conditional Probability

Let S be a sample space with probability P. Let A and B be two events with $P(B)>0$. Then the conditional probability of A given B written as $P(A \mid B)$ and is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

X-outcome of fair die roll

Y be the number of heads in X coin flips.
\bullet What is the distribution of X ?

X-outcome of fair die roll

Y be the number of heads in X coin flips.
-What is the distribution of $(Y \mid X=n)$ for $n=1, \ldots, 6$?

X-outcome of fair die roll

Y be the number of heads in X coin flips.
-What is the conditional probability $P(X \mid Y=0)$?

Bayes Theorem

Theorem

Suppose A is an event, $\left\{B_{i}: 1 \leq i \leq n\right\}$ are a collection of disjoint events whose union contains all of A. Further assume that $P(A)>0$ and $P\left(B_{i}\right)>0$ for all $1 \leq i \leq n$. Then for any $1 \leq i \leq n$,

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{j=1}^{n} P\left(A \mid B_{j}\right) P\left(B_{j}\right)} .
$$

