Hypothesis Testing:-
Example:- Coin; Probability of heads $\equiv p$
Question: Estimate p ?
Generate: - $\underbrace{x_{1}, x_{2}, \ldots, x_{100}}_{i .1 . d}$ Bernoulli. $[p)$ coin tosses
Compute :- $\quad \sum_{i=1}^{100} x_{i} \overline{\bar{c}}_{\text {say }} 67$
Estimate: $\quad \hat{\phi}=\frac{67}{100}=0.67$
confidence interval

Question:- Test if the coin is tau or not re Is $p=0.5$?

Basel on the oborncel data how dos one make a judgement on this question?
Ex:- Suppose coin wan tain; $\quad X_{i} \sim \operatorname{Bernall}\left(\frac{1}{2}\right)$
Then

$$
\mathbb{P}\left(\sum_{i=1}^{100} x_{i} \geq 67\right) \sim 0.04
$$

i.e. the observal event has very small

Prorabiluts \Rightarrow Coin perhaps is not tall
ie the experimental criderue does nat support

$$
P=0.5 .
$$

Basic frameworle X-Population hos a p.m.f or p.d.t $f(. \mid p)$
where $p \in P \leqslant \mathbb{B}^{Q}$.

Conjecture :- X - Is $P \in P_{0} \subseteq P$?
Example: $P=[0,1], \quad P_{0}=\{0.5\}$

Retared to as Null hypothesis

Formal Theory of Hypothesis Testing:-

- Sander $X_{1}, \ldots, X_{n} \quad i-6 d x$
- Develop a "test statistic" 三 function of $x_{1} . ., x_{n}$ Distribution will parameter p
decanal on p
- To "vents" or test the consectur of $p \in P_{0}$ - one asks of the olaerval statistic could ariz from a $p \in P_{0}$
- quantifies the degree of this possibalets through a P eobability $\equiv p$-value.
- Requirement :- the distribution of the teststatistic is fully known when $p \in P_{0}$.
- Necessity:- To find the "best" test-statistic definal through som optimality condition - haul to establish.

Intuitive Approach :-

- unknown parameter of intercut $-p \in \mathbb{P}$
- null hypothesis of interest about He parameter, le $P \in P_{0}$
- test-statistic - whose distribution is Known under null.

Example: $\quad X \sim \operatorname{Norial}\left(\mu, \sigma^{2}\right) \quad \sigma_{\bar{\prime}}$ known

$$
p \equiv\left(\mu, \sigma^{2}\right) \subseteq \mathbb{B} \times \mathbb{B}_{+} \quad \mu \in \mathbb{B} \text {-unknown. }
$$

- let $x_{1}, x_{2}, \ldots, x_{n}$ be i.i.d. x
- Conjecture:- Is $\mu=C$? C - known value. (Null Hypothesis)

$$
\text { Is } b \in P_{0}=\{c\} \times\left\{\sigma^{2}\right\}
$$

Test statistic as T: if $\mu=c$

$$
T\left(x_{1} \ldots x_{n}\right) \equiv \sqrt{n}\left(\frac{\bar{x}-c}{\sigma}\right) \sim \text { Normal }(0,1)
$$

Formalise $i t$:- Given x_{1}, \ldots, x_{3} from population.
let $Y_{1 . .}, y_{0}$ be $i-6 d x$ (minis samples)

Cal culate:-

$$
\mathbb{P}(\bar{y} \geqslant \vec{x})=\mathbb{P}\left(v_{n} \frac{(\bar{y}-c)}{\int^{\sigma}} \geqslant v_{n}\left(\frac{\bar{x}-c}{\sigma}\right)\right)
$$

Normal $(0,1)$ (f $X \sim \operatorname{Normal}\left(0, s^{\prime}\right)$

$$
=P\left(z \geqslant \sqrt{n}\left(\frac{\bar{x}-c}{\sigma}\right)\right)
$$

Procedure:- $\quad F_{1 x}$ a threshold sal α (Signiticanar level $\alpha \in(0,11)$

If $P(\bar{y} \geqslant \bar{x})<\alpha$ then we would conclude $\mu=c$ is in correct
if $P(\bar{Y} \geqslant \bar{x}) \geqslant \alpha$ then ve would conelude liat $\mu=c$ cannot be rejected.

Z-test:- Null: $\mu=c$.

- Fix d\& $(0,1) \equiv$ therstold
- Compute $\sqrt{a}\left(\frac{\bar{x}-c}{\sigma}\right)$
- Chacle $T P\left(z \geqslant \sqrt{n}\left(\frac{\bar{x}-c}{\sigma}\right)\right) \equiv 2<2$

Reject noll hypolthess

Example:- $-X \sim \operatorname{Normal}(\mu, q)$
(a) - Sample $x_{1}, x_{2}, \ldots, x_{16}$ of cid earilom vaiabls $x, \quad \bar{x}=10.2$

- Null-hypothesi : $\mu=9-5$.

Alternative hoppthesis: $\mu>9.5$
$0 \quad F i x \quad \alpha=0.05$

Cimate $\therefore \sqrt{n}^{\left(\frac{\bar{x}-9.5}{\sigma}\right)}=\frac{4(10.2-9.5)}{3}$

$$
\begin{aligned}
& T\left(z \geqslant 4\left(\frac{(10.2-9.5)}{3}\right)=0.175\right. \\
& Z \sim E_{x}^{(N o r m a l}(0,1)
\end{aligned}
$$

As $0.17 \mathrm{~J} \gg 0.05 \equiv \alpha$, we would not seject the nall hypothes's.

- We obsericel that $\bar{x}=10.2$ hos a 0.175 I.c. 17.5% chance of occecins shem $\mu=9.5$, theree we will not rejeet the n-ill hopotbesis.

Ex:- Relace (a) witt ai
(a) $\bar{x}=10.2$ bas

Null $h_{\text {epiltes }}: \mu=8.5$
Alternative $h_{>p o t h e s s i s: ~}^{\text {s }} \mu>8.5$

- Pecide wits $\alpha=0.05$?

