Hypothesis Testing :-

Example: - Coin; Probability of heads = \$ Question: Estimate p? Generate: - X, X2,..., X100 Coin tosses i.l.d Bernoulli (p) Compute:- 2 Xi = 67 Contidence Estimate: $\hat{p} = 67 = 0.67$ interval Question: Test if the coin is tak or not 12 Is \$= 0.5? Based on the observed data how does one make a judgement on this guestion? Ex: - Suppose coin was take; Xi ~ Bernoulli (1/2) Thea $\mathbb{P}(\sum_{i=1}^{loo} X_i \ge 67) \sim 0.04$ i.e. the observal erent has very small

Prodability =) (oin perhaps is not faul

IE the experimental critical does not support
P = 0.5.
Basic frameworks X - Population has a
provis or pridit
$$f(\cdot | p)$$

where $p \in P \in TB^{Q}$.
Conjecture :: X - Is $p \in P_0 \subseteq P_1^Q$
Example: $P = C_{0,1}$, $P_0 = f_{0,0}^Q$
Referred to as Null hapothesis
Formal Theory of Hypothesis Testing :-
- Sande X₁,..., X_n Gried X
- Develop a "test statistic" = function of X₁..., X_n
Distribution will
depend on pracementar b
- To "yearts" or test the consecture of
 $p \in P_0^Q$ - One axis of the depend

Example:
$$X \sim Noinal (\mathcal{U}, \sigma^{2})$$
 $\mathcal{G} \equiv known$
 $p \equiv (\mathcal{U}, \sigma^{2}) \subseteq \mathbb{B} \times \mathbb{B}_{+}$ $\mathcal{U} \subseteq \mathbb{B} - \mathcal{U} \wedge known$.
 $\cdot let X_{1}, X_{1}, \ldots, X_{n}$ be i.i.d. X
 $\cdot conjecture: T_{1} \mathcal{U} = C ? C - known value.$
 $(Null Hygolfheids)$
 $T_{2} \neq G = QC_{2} \times 10^{2} f$

Test statistic
$$a_{0}T : \psi = c$$

 $T(X_{1}, X_{0}) \equiv \sqrt{n} \left(\frac{\overline{X}-c}{\sigma}\right) \sim Nound [o_{1}]$
Formalise $t := Given X_{1}, \dots, X_{n}$ from population.
Let $Y_{1, C}, Y_{0}$ be crud X
(minic samples)
Calculate:-
 $P(\overline{Y} \ge \overline{X}) = P(\sigma_{n}(\overline{Y}-c) \ge \sigma_{n}(\overline{X}-c))$
 \int_{0}^{∞}
Nounal (o_{1}) (f $X \sim Nound (c_{1}c^{2}))$
 $= P(\overline{Z} \ge \sigma_{n}(\overline{X}-c))$
Procedure:- Fix a threshold sets a
(Significant level at level
Nounal (o_{1}) $\mathcal{J} \le \mathcal{J}$ then we
would conclude $\mathcal{J} = c$ is formered

Z-test: Null:
$$M=c$$
.
Fux $d \in (c_1) = torshold$
- $Compute (Ta(X-c))$
- $Checke P(Z = (Ta(X-c))) = \int < d$
Reject noll hypothesis Canat eigen life
null hypothesis

Example: - X ~ Normal (M, 9)
(d) - Sample X, X, X, X, X, S of Und eardon
voliable X, X = 10.2
. Null - hypothesis:
$$\mu = 9.5$$
.
again st
Alternative hypothesis : $\mu > 9.5$

 $\frac{G}{\sigma} = \frac{1}{\sigma} \left(\frac{\overline{\chi} - 9.5}{\sigma} \right) = \frac{4(10.2 - 9.5)}{3}$

As 0-175 >> 0.05 =2, we would not reject the null hyperthesis.

· we observed that $\overline{X} = 10.2$ has a 0.175 i.e. 17.5 % chance of occursions show u= 9.5, have we will not rejeet the null hopethesis.

Ex:- Rielace @ wilts @

 $(\alpha)' \cdots \vec{X} = 10.2$ Lut Null My. 1565 : U= 8.5 Alternative hypotsess. M78.5 - peride with d = 0.05 ?