Maximum likelihood Estimator:-
let x_{1}, x_{2}, x_{n} be i.l.d $x<$ p.m.f. $f(x \mid p)$

$$
p \in P \subseteq \mathbb{R}^{d}
$$

Likelihood function

$$
L\left(p_{j} x_{1, j}, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid p\right)
$$

Suppose $\hat{p} \equiv \hat{p}\left(x_{1 ;}, x_{n}\right)$ is a point at which $L\left(P ; X_{1}, \ldots, X_{n}\right)$ attains the maximum a_{n} a function of p
$\Rightarrow \hat{\beta}=$ maximon likcli hood estimator of \hat{p} (M.L.E.)

Applications to Edge Probability of Eedös-Renyi

Recall (Friday) worksheck
(i) chook $x \in\{1,2,3,4,5\}$. \equiv uniformly.
(ii) $A \equiv$ designate an event in the

Experinetr of colling a dic, whox
probabilits $p \equiv \frac{x}{6}$
[$x \equiv$ outcome of eoll ot a dic

$$
\begin{align*}
& \mathbb{P}(x=1)=1 / 6 \\
& \mathbb{P}(x \leq 2)=2 / 6 \\
& \mathbb{P}(x \leq 3)=3 / 6 \\
& \mathbb{P}(x \leq 4)=4 / 6 \\
& \mathbb{P}(x \leq 5)=5 / 6
\end{align*}
$$

Revicw - Eedös - Renyi Graph G(n, p)

- late 40's - applications in netwons
- well studied - simple to under stire.

$$
\cdot \begin{aligned}
V=\{1, . ., n\} \quad E & \leqslant v \times v \\
& =\{\{i, j t \mid i s \in V\}
\end{aligned}
$$

-i~i w.e p
(place an edse with peobatiletes b)

- each vestir $i \in V \equiv \begin{gathered}\text { can be to } n-1 \\ \text { contices }\end{gathered}$

So thre au $\frac{n(n-1)}{2}$ possible edses

Expectal nomber of edges:- $\frac{n(n-1)}{2} t$ in Eldós Rensi
(iii) went to each edse inj

- Rollwo the die
- if event A occurrel then placeel an edge; otherwus not.
[Construction]
\rightarrow graph and Adjaccry matixs

Question:- Fuom the graph $G\left(n, \frac{x}{6}\right)$ Can we estimate x ? $[n=10]$

Answes:. let E be nomber of Edse in $G\left(1, \frac{x}{6}\right)$

$$
i<n-1 \text { edgs w.e. } p
$$

- Performins $\frac{n(n-1)}{2}$ trials with succeos Peobabilites $p \equiv \frac{x}{6}$
$-E \equiv \#$ of successes in $\frac{n(n-1)}{2}$ trials
$E \sim$ Binomial $\left(\frac{n(n-1)}{2}, \frac{x}{6}\right)$
Likelihood for E

$$
L(x ; E)=\left(\frac{n(n-1)}{2}\right)\left(\frac{x}{6}\right)^{E}\left(1-\frac{x}{6}\right)^{\frac{n(n-1)}{2}-E}
$$

\therefore Given E :- Find x^{*} such that

$$
L\left(x^{*}, E\right)=\max _{0 \leq x \leq 6} L(x ; E)
$$

Take logarithm

$$
\begin{aligned}
& T(x) \equiv \log (L(x ; E))= \log \left(\frac{n(n-1)}{2}\right)+E \log \left(\frac{x}{6}\right) \\
&+\left(\frac{n(n-1)}{2}-E\right) \log \left(1-\frac{x}{6}\right) \\
& T^{\prime}(x)=E \cdot \frac{6}{x} \cdot \frac{1}{6}+\left(\frac{n(n-1)}{2}-E\right) \frac{1}{1-\frac{x}{6}}\left(-\frac{1}{6}\right)
\end{aligned}
$$

Set $T^{\prime}(x)=0 \Rightarrow$

$$
\begin{aligned}
& \frac{E}{x}=\left(\frac{n(n-1)}{2}-E\right) \frac{1}{6} \cdot \frac{1}{1-\frac{x}{6}} \\
\Rightarrow & \frac{1-\frac{x}{6}}{\frac{x}{6}}=\frac{n(n-1)}{2 E}-1 \\
\Rightarrow & \frac{1}{x / 6}=\frac{n(n-1)}{2 E} \\
\Rightarrow & x=\frac{6 \times 2 \times E}{n(n-1)}
\end{aligned}
$$

$\therefore \quad x^{*}=\frac{12 E}{n(n-1)}$ is MLE for x in $G\left(n, \frac{x}{6}\right)$
if there cul I - edses.
E.g:- Soppos $\begin{aligned} E=7 \\ n=10\end{aligned} \Rightarrow x^{k}=\frac{84}{90}=\frac{14}{15} \approx 1$ Estinate fre $x \equiv 1$.

Question 2:- Consider $G\left(n, \frac{\lambda}{n}\right)$ for $\delta>0$. and n-large.

- let $d_{n} \equiv$ degree
uniforms choose vertex.

What $n \quad \lim _{n \rightarrow \infty} P\left(d_{n}=k\right) \equiv$?

- σ-known $\bar{x}-\bar{y}$ - underitool
- σ-unknour $\frac{\bar{x}-\mu}{S \leftarrow}$ unknow bo estimate $\left\lvert\, \frac{\bar{x}-\bar{y}}{S} \cdot\right.$

Statitu - Distribalios.

Distand \downarrow
Dentas dortartén whelv
hull has

$$
2_{i} \ldots 2_{n} \quad . . \frac{\bar{z}-\bar{\omega}}{s} \in d s
$$

$\sigma=1$, Fip ans Simelete

$$
\begin{aligned}
& \text { E.3 } u(-1,1) * S \in \mathbb{S} \in(1,1+\mu) \\
& \text { E.C.DF (}-\cdot \text {).. CDF. }
\end{aligned}
$$

