Confidence interval fur mean μ when σ is unknown

Suppose x is known to be Normally distributed mean μ and valiance σ^{2}.

Sample $x_{1}, x_{2}, \ldots x_{n}$ from population X

$$
\begin{aligned}
& \bar{x}=\frac{x_{1}+x_{i}+\cdots+x_{n}}{n} \\
& s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

Recall: $Z=\sqrt{n}(\bar{x}-\mu) \sim \operatorname{Normal}(0,1)$
\rightarrow Central limit Theorem. was used to fined contidenee interval.

Statistic $\quad J:=\frac{\sqrt{n}(\bar{x}-\mu)}{S}$
Q: What is the distribution of T ?
$A:$

Step 1:- $\quad X_{i} \stackrel{\otimes}{=} \operatorname{Nomal}\left(\mu, \sigma^{2}\right)$ and
$V_{a l}\left(x_{i}\right)=\sigma^{2}, \operatorname{mean}^{2}\left(\gamma_{1}\right)=\mu$, independent.

$$
\frac{\bar{x}-\mu}{\sigma / \sigma_{n}} \sim \operatorname{Normal}(0,1)
$$

Step 2:- $\quad S^{2}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}$

$$
\frac{(n-1)}{\sigma^{2}} S^{2} \sim x_{n-1}^{2} \equiv \text { Chi-Squared }
$$

$$
\text { Step } 2 a: \frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \text { and } \frac{(n-1)}{\sigma^{2}} S^{2} \text { are independent. }
$$

Step 3 :-

$$
\begin{aligned}
T:=\frac{s_{n}(\bar{x}-\mu)}{s} & =\frac{\frac{\bar{x}-\mu}{\sigma / s_{n}}}{\sqrt{\frac{1}{n-1} \frac{(n-1)}{\sigma^{2}} s^{2}}} \\
& \sim \frac{\text { Normal }(0,1)}{\sqrt{\frac{x_{n-1}^{2}}{n-1}}} \stackrel{d}{=} t_{n-1}
\end{aligned}
$$

Answer: $\quad T:=\frac{S_{n}(\bar{x}-\mu)}{S}$ has the
t. distribution witt n-1 degrees of freedom and has pud. f given by

$$
\begin{aligned}
& f_{T}(t)=\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{(n-1) \pi} \Gamma(n-1)}\left(1+\frac{t^{2}}{n-1}\right)^{-\frac{n}{2}} \\
& t \in \mathbb{R}
\end{aligned}
$$

Final step:-
Find $a: \mathbb{P}(|\bar{x}-\mu|<a)$ - large

$$
\begin{aligned}
& \equiv \mathbb{P}\left(r_{n} \frac{|\bar{X}-\mu|}{s}<\frac{a}{s} v_{n}\right) \\
& \equiv \mathbb{P}\left(|T|<\frac{a}{s} \delta_{n}\right) \\
& \equiv \mathbb{P}\left(-\frac{a}{s} \sigma_{n}<T<\frac{a \delta_{n}}{s}\right)
\end{aligned}
$$

where $T \sim t_{n-s}$

Suppose we want 95% C.I for μ when σ is ink noun
ic Find a :

$$
P(|\bar{x}-r|<9) \simeq 0.95
$$

le Find a :

$$
\mathbb{P}\left(-\frac{a}{S} \sigma_{n}<T<\frac{a \delta_{n}}{\delta}\right) \simeq 0.95
$$

n-knoor sample size
From t_{n-1} distribution we know

$$
\mathbb{P}\left(|T|<t_{n-1,0.95}\right) \equiv 0.95
$$

Set $\frac{a \sqrt{n}}{5}=t_{n-1,0.95}$

$$
\Rightarrow \quad a=\frac{s}{\sqrt{n}} t_{a-1,0.95}
$$

95\% C.I for μ when $\begin{array}{r}\text { unknown }\end{array}$ is given bs

$$
\left(\bar{x}-\frac{s}{v_{n}} t_{a-1,} 0.96, \bar{x}+\frac{s}{\sqrt{n}} t_{n-1,0.95}\right)
$$

Review - Chi- Squaral Distribution

$$
\begin{aligned}
& X_{1} \stackrel{d}{=} \text { Nominal }(0, s) \\
& f_{x_{1}}(z)=\frac{e^{-z^{2} / 2}}{\sqrt{2 \pi}} \quad z \in \mathbb{R}
\end{aligned}
$$

Q:- $U=X_{1}{ }^{2} \quad$ Find distribution of U
A:- (i) Find distribution function of U

$$
\begin{aligned}
F_{u}(u) & =\mathbb{P}(u \leq u) \\
& =\mathbb{P}\left(x_{1}^{2} \leq u\right) \\
& =P\left(-\sqrt{u} \leq x_{1} \leq \sqrt{u}\right) \\
& =\int_{-\sqrt{u}}^{\sqrt{u}} \frac{e^{-z^{2} / 2}}{\sqrt{u \pi}} d z \\
& =2 \int_{0}^{\sqrt{u}} \frac{e^{-z^{2} / 4}}{\sqrt{2 \pi}} d z
\end{aligned}
$$

(ii) Differentiate to find the pref of u

$$
\begin{aligned}
& f_{u c}(u)=2 \frac{e^{-u / v}}{\sqrt{2 \pi}} \frac{1}{2} u^{1 / 2-1} \\
& f_{n}(u)=\frac{e^{-u / 2}}{\sqrt{2 \pi}} u^{1 / 2-1} \sim x_{1}^{2} \text { distribution } \\
& \| d \\
& \\
& \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)
\end{aligned}
$$

$\begin{aligned} & \text { [Ha,d] } \\ & \text { [OMit PLOAt] }\end{aligned} \quad \delta^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \sim x_{n-1}^{2}=P\left(n-1, \frac{1}{2}\right)$
has P.d.f.

$$
f(s)=\left\{\begin{array}{cl}
\frac{2^{-n / 2} s^{n / 2-1} e^{-\delta / 2}}{\rho(\wedge / 2)} & s \geq 0 \\
0 & \text { olterwix }
\end{array}\right.
$$

$x_{n-1}^{2}=$ Chi-squasal distribulion wilts $n-1$ degrees of tree dom.
fron $S=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}$

