Recall :- $x_{1}, x_{2}, \ldots, x_{n}$ be $i=t d$ random variables
Emperical distribution is the discecte distribution with p.mef

$$
f_{n}(t)=\frac{1}{n} \#\left\{i: x_{i}=t\right\}
$$

$\underset{\substack{\text { Descinptir } \\ \text { statistics }}}{ }\{$-Tools of probability

- Make no additional assumptions

$$
\begin{aligned}
\text { Emperical }- \text { Random Quantity } \equiv & \text { changes wilt } \\
\text { distribution } & \text { each sample }
\end{aligned}
$$

as n - sets langer - "captures information about the underling distribution. it we corpate Probabilities of events that by underling we ale interested in from Erpeiical distributes distribution then then will approach the true Probabilities of the events

Focus of this vecle :- How to make this dea rigorous?

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables. The "empirical distribution" based on these is the discrete distribution with probability mass function given by

$$
f(t)=\frac{1}{n} \#\left\{X_{i}=t\right\}
$$

Ex:- y is a suv with p.m.t $f_{n}(\cdot)$

$$
\left.\begin{array}{rl}
\text { ie } & P(y=t)=f_{n}(t) \\
E[y)=\sum_{t \in T} t \mathbb{P}(y=t)= & \bar{x} \\
& (\sec \text { below } \\
& \text { for definition }
\end{array}\right)
$$

It X be a random variable

$$
E[x]=\mu \quad \operatorname{Var}[x]=\sigma^{2}
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables The "sample mean" of these is

$$
\begin{aligned}
& \operatorname{Var}[\bar{x}]=\operatorname{Var} \frac{\left[x_{1}+x_{2}+\cdots+x_{n}\right]}{n} \\
& \text { indeperdinee } \\
& \underset{\substack{\text { Propeties } \\
\text { of vainana }}}{n^{2}}=\frac{1}{i=1} \operatorname{var}\left[x_{i}\right] \quad\left[\begin{array}{cc}
\because & \operatorname{Cor}\left[x_{i}, x_{j}\right]=0 \\
c+j
\end{array}\right] \\
& =\frac{1}{n^{2}} n \cdot \operatorname{Var}[x] \\
& =\frac{1}{n} \sigma^{2} \\
& \therefore S D[\bar{x}]=\frac{\sigma}{S_{n}} \quad \begin{array}{r}
S \cdot D \text { reduction } \\
\text { an m sets lager }
\end{array} \\
& \text { "Range of } \bar{x}^{\prime \prime} \equiv "[-\operatorname{SD}(\bar{x}]+\mu, \quad \operatorname{SO}(\bar{x})+\mu]^{\prime \prime} \\
& =\left(\mu-\frac{\sigma}{\sqrt{n}}, \mu+\frac{\sigma}{\sqrt{n}}\right) \\
& \text { intervel gets somaller } \\
& \text { as } n \text { gets lacger }
\end{aligned}
$$

n-sets layse \bar{x} - concentrates acounl μ.
(1) $-E[\bar{x}]=\mu \equiv$ unbiard Estimate
(2) $\quad \begin{aligned} &-S D[\bar{x}] \\ & \text { on } \rightarrow 0\end{aligned} \equiv$ consistent Estimate.

Question:- let A bc an erent of intecest

$$
\mathbb{P}(x \in A)=?
$$

Let $x_{1}, x_{2}, \ldots, x_{0}$ be ied. x
let y be a randon variable with pimit
the Enperical distorbutios: $\equiv f_{n}(\cdot)$

Question:- Is $P(Y \in A)$ a goal estimator for $\quad p=P(x \in A) ?$
Reasoning:-

$$
z_{i}=\left\{\begin{array}{lll}
1 & \text { if } & x_{i} \in A \\
0 & \text { if } & x_{i} \notin A
\end{array}\right.
$$

- $\left.2 z_{i}\right\}_{i \geqslant 1}$ are independent and $\mathbb{P}\left(z_{i}=1\right)=p$.

$$
\Rightarrow \quad W=\sum_{i=1}^{n} z_{i} \quad \sim \operatorname{Binomial}(n, p)
$$

Note $\quad P(Y \in A)=\frac{w}{n}$.

Sample Proportion

Let $X_{1}, X_{2}, \ldots, X_{n}$ be an i.i.d. sample of random variables with the same distribution as a random variable X, and suppose that we are interested in the value $p=P(X \in A)$ for an event A. Let

$$
\hat{p}=\frac{\#\left\{X_{i} \in A\right\}}{n} .
$$

Then, $E(\hat{p})=P(X \in A)$ and $\operatorname{Var}(\hat{p}) \rightarrow 0$ as $n \rightarrow \infty$.

As: $\hat{p}=P(y \in A)$ and $E[\hat{p}]=E\left[\frac{w}{n}\right]=\frac{1}{n} n p=p$
WN Binomial (n, p)

$$
\begin{aligned}
\operatorname{Var}[\hat{p}] & =\operatorname{Vac}\left[\frac{w}{n}\right]=\frac{1}{n^{2}} \operatorname{Var}[w] \\
& =\frac{p(1-p) n}{n^{2}}=\frac{p(1-p)}{n} \\
\operatorname{Var}[\hat{p}] & \longrightarrow 0 \text { os } n \rightarrow \infty
\end{aligned}
$$

$\frac{\text { Relative frequency }}{\text { in nutrias }} \frac{n \text {-large }}{\text { close }} \quad$ Probabilites
let $x_{1}, x_{2}, . . x_{n}$ be i-ide $x . E[x]=\mu$ and $\operatorname{var}[x]=\sigma^{2}$

$$
\bar{x}=\frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)
$$

Already observe

$$
\begin{aligned}
& E[\bar{X}]=\mu \\
& \operatorname{var}[\bar{x}]=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Quantity [Event:- $\{|\bar{x}-\mu|>\varepsilon\}$ for sore $\varepsilon>0$ of infercst

Markous In equalva

$$
\hat{j}
$$

$$
\forall \varepsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}(\bar{x} \in(\mu-\varepsilon \mu+\varepsilon))=1
$$

$$
\begin{aligned}
& \mathbb{P}(|\bar{x}-\mu|>\varepsilon) \stackrel{1}{\varepsilon^{2}} E|\bar{x}-\mu|^{2} \\
& =\frac{\operatorname{Var}[\bar{x}]}{\varepsilon^{2}} \\
& =\frac{\sigma^{2}}{n \varepsilon^{2}} \\
& \therefore \quad 0 \leq \underbrace{\frac{\sigma^{2}}{n \varepsilon^{2}}}_{\lim _{n \rightarrow \infty} \frac{\sigma^{2}(|\bar{x}-\mu|>\varepsilon)}{\varepsilon^{2}} \perp=0} \\
& \forall \varepsilon>0 \\
& \therefore \quad \lim _{n \rightarrow \infty} \mathbb{P}(|\bar{x}-\mu|>\varepsilon)=0 \\
& \text { 介 } \\
& \forall \varepsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}(\bar{x} \notin(\mu-\varepsilon, \mu+c))=0
\end{aligned}
$$

Proof is above

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables. Assume that X_{1} has finite mean μ and finite variance σ^{2}. Then for any $\epsilon>0$

$$
\begin{align*}
& \lim _{n \rightarrow \infty} P\left(\left|\bar{X}_{n}-\mu\right|>\epsilon\right)=0, \tag{1}\\
& \text { In } \\
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\bar{X}_{n} \&(\mu-\varepsilon \mu+\varepsilon)=0\right. \\
& \text { III } \\
& \lim _{n \rightarrow \infty} \mathbb{P}\left(\bar{X}_{n} \in(\mu-\varepsilon, \mu+\varepsilon)=1\right.
\end{align*}
$$

- "stronger" than the weale law, le SLLN

Let X_{1}, X_{2}, \ldots be a sequence of i.i.d. random variables. Assume that X_{1} has finite mean μ and $E\left|X_{1}\right|<\infty$

$$
A=\left\{\lim _{n \rightarrow \infty} \frac{X_{1}+X_{2}+\ldots+X_{n}}{n}=\mu\right\}
$$

then

$$
P(A)=1
$$

- Prot is mach hauler to do.

A- an event of interest
Question: $\mathbb{P}(x \in A) \equiv p \equiv$?
Take $x_{1}, x_{2}, \ldots, x_{n} \quad \in \cdot d$
Sample

$$
\begin{aligned}
& \quad z_{i}= \begin{cases}1 & x_{i} \in A \\
0 & x_{i} \notin A\end{cases} \\
&\left\langle z_{i}\right\}_{i=1}^{n} \text { vid. } \quad \text { Bernoulsi}(p) \\
& E\left[z_{i}\right]=p \\
& \operatorname{var}\left[z_{i}\right]=p[1-p)
\end{aligned}
$$

WLLN:

$$
\bar{Z}=\frac{1}{n} \sum_{i=1}^{n} 2 i=\frac{1}{n} \#\left\{i \cdot x_{i} \in A\right\} \equiv \widehat{b}
$$

$\forall \varepsilon>0, \mathbb{P}(\bar{z}-p \mid>\varepsilon) \rightarrow 0 \quad a \quad n \rightarrow \infty$
$\forall \varepsilon>P(\mid \hat{p}-p)>\varepsilon) \rightarrow 0 \quad$ o $\wedge \rightarrow \infty$

S2LN

$$
\begin{aligned}
& \text { SLLN } \mathbb{P}\left(\lim _{n \rightarrow \infty} \hat{p}=\hat{p}\right)=1 \\
& \mathbb{P}\left(\lim _{n \rightarrow \infty} \text { "relative }_{\text {frequencs }}=1\right.
\end{aligned}
$$

Law of Large Numbers

$>$ runningmean $=$ function $(x, N)\{$
$+y=\operatorname{sample}(x, N, r e p l a c e=T R U E)$
$+\mathrm{c}=$ cumsum(y)
$+\mathrm{n}=1: \mathrm{N}$
$+\mathrm{c} / \mathrm{n}$
$+\}$
> $u=$ runningmean $(c(0,1), 1000)$

Law of Large Numbers

```
> x=1:1000; plot(u~x, type="l");
```


Law of Large Numbers

```
> x=1:1000; plot(u~x, type="l");
```

$>$ replicate(10, lines(runningmean(c(0,1), 1000) ${ }^{\sim} x$, type="l", col=rgb(runif(3),runif(3),runif(3))))

Law of Large Numbers

