Let X_1, X_2, \ldots, X_n be i.i.d. random variables. The "empirical distribution" based on these is the discrete distribution with probability mass function given by

$$f(t) = \frac{1}{n} \# \{X_i = t\}.$$

$$E_{X:-} \quad Y \quad in \quad a \quad g_i \cdot u \cdot u \cdot h \quad p'n \cdot f \quad f_n (\cdot)$$

$$i.e \quad p(Y=t) = f_n(t)$$

$$E \quad [Y] = \quad \sum_{t \in T} t \quad p(Y=t) = \quad X$$

$$f_{or} \quad deh \quad if_{ion}$$

Sample Mean

Id X be a random variable

$$E[x] = \mu$$
 Var $[x] = \sigma^{2}$
Let $X_{1}, X_{2}, ..., X_{n}$ be i.i.d. random variables. The "sample mean"
of these is
 $\bar{X} = \frac{X_{1} + X_{2} + \dots + X_{n}}{n}$.
 $\cdot E[\bar{X}] = E[X_{1} + X_{2} + \dots + X_{n}]$
 $ineanls
 $G_{rpectator}$
 $f_{rpectator}$
 $f_{rpectator}$$

. Var
$$[\overline{x}] = Var [\overline{x}_{1} + \overline{x}_{r+1} + \overline{x}_{r}]$$

Properties $= \int_{\mathbb{R}^{n}} \int_{\overline{z}}^{\infty} var [\overline{x}_{r}] = \int_{\overline{z}}^{\infty} (\overline{z} + \overline{z}_{r}) \int_{\overline{z}}^{\infty} (\overline{z} + \overline{z}_{r}) \int_{\overline{z}}^{\infty} (\overline{z} + \overline{z}) \int_{\overline{z$

Let X₁, X₁, ...,X₀ be cold. X
(ct Y be a random variable with prot
lite Experiend derts button = fn (J)
•
$$P(XEA) \approx P(YEA) = \Xi fn(t)$$

 $each$
 $approximation$
 $P(YEA) = \int t \notin \{i: Xi \in A\}$
 $fn(\cdot)$ gave
 $rass \int tD$
 $each$ Te
 Te

Let $X_1, X_2, ..., X_n$ be an i.i.d. sample of random variables with the same distribution as a random variable X, and suppose that we are interested in the value $p = P(X \in A)$ for an event A. Let

$$\hat{p} = \frac{\#\{X_i \in A\}}{n}$$

Then, $E(\hat{p}) = P(X \in A)$ and $Var(\hat{p}) \rightarrow 0$ as $n \rightarrow \infty$.

As:
$$\beta = P(160)$$
 and $E[E\beta] = E[W] = \frac{1}{2} \times \beta = \frac{1}{2}$
 $W = Binorial (n, p)$
 $Var [\beta] = Var [W] = \frac{1}{2} Var [V]$
 $= \frac{1}{2} (Var [V])$
 $Var [\beta] = var [W] = \frac{1}{2} Var [V]$
 $Var [\beta] = 0$ $a n b e$
 $Var [\beta] = 0$ $a n b e$
 $Var [\beta] = 0$ $a n b e$
 $Consistent$
 $Relative frequency = \frac{n - laree}{1 - 1}$
 $Relative f$

Weak Law of Large Numbers

Proof is above

Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables. Assume that X_1 has finite mean μ and finite variance σ^2 . Then for any $\epsilon > 0$

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \epsilon) = 0, \qquad (1)$$

$$\lim_{n \to \infty} P(\bar{X}_n \notin (\mu - \xi, \mu + \epsilon)) = 0, \qquad (1)$$

$$\lim_{n \to \infty} P(\bar{X}_n \notin (\mu - \xi, \mu + \epsilon)) = 0, \qquad (1)$$

Strong Law of Large Numbers

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables. Assume that X_1 has finite mean μ and $E \mid X_1 \mid < \infty$

$$A = \left\{ \lim_{n \to \infty} \frac{X_1 + X_2 + \ldots + X_n}{n} = \mu \right\},\,$$

then

$$P(A)=1.$$

A- an event of interest
Question:
$$\mathbb{P}(x \in A) \equiv p \equiv ?$$

Take $X_{1}, X_{1}, \dots, X_{n}$ tool X
Sample
 $\overline{Zi} = \int_{1}^{1} Xi \in A$
 $\overline{Zi} = \int_{0}^{1} Xi \notin A$
 $\overline{Zi} = \int_{0}^{1} vid$. Bernoulli (b)
 $\overline{Zi} = i$
 $E[Zi] = p$
 $Var[Zi] = p[1-p]$

$$\frac{WLLN}{Z} = \frac{1}{n} \frac{2}{Z} = \frac{1}{n} \frac{4}{2} \frac{1}{2} = \frac{1}{n} \frac{4}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{n} \frac{4}{2} \frac{1}{2} \frac$$


```
> runningmean = function (x,N){
+ y = sample(x,N, replace=TRUE)
+ c = cumsum(y)
+ n = 1:N
+ c/n
+ }
> u = runningmean(c(0,1), 1000)
```

Law of Large Numbers

```
> x=1:1000; plot(u~x, type="l");
>
```


х

Law of Large Numbers

- > x=1:1000; plot(u~x, type="l");
- > replicate(10, lines(runningmean(c(0,1), 1000)~x, type="l", col=rgb(runif(3),runif(3),runif(3))))

х

Law of Large Numbers

