1. De Moivre's Central Limit Theorem.
(a) Using the rbinom generate 100 samples of $\operatorname{Binomial}(20,0.5)$ and plot the histogram of the data-set.
(b) Using the rnorm generate 100 samples of $\operatorname{Normal}(10,5)$ and plot the histogram of the data set.

Think of ways you can enhance the above exercise to come up with a computer proof of the Central Limit Theorem.
2. Poisson Approximation
(a) Using the rbinom generate 100 samples of Binomial(2000,0.001), save it in a dataframe dfbinomial and plot the histogram of the data-set.
(b) Using the rpois generate 100 samples of Poisson(2), save it in a dataframe dfnormal and plot the histogram of the data set

Think of ways you can enhance the above exercise to come up with a computer proof of the Poisson Approximation, even though we have seen a proof in class.
3. The following result is a Berry-Eseen Type bound.

Theorem: Let $X_{n} \sim \operatorname{Binomial}(n, p)$, then there exists $C>0$ such that

$$
\sup _{x \in R}\left|P\left(\frac{X_{n}-n p}{\sqrt{n p(1-p)}} \leq x\right)-\int_{\infty}^{x} \frac{\exp \left(-\frac{y^{2}}{2}\right)}{\sqrt{2 \pi}} d t\right| \leq \frac{\left(p^{2}+(1-p)^{2}\right)}{2 \sqrt{n p(1-p)}}
$$

We shall prove it by simulation by the below algorithm.

```
For x = -2,-1.9,-1,8,\ldots.0,\ldots,1.9,2
    using inbuilt pnorm find z[x]:- pnorm(x)
Set p
For m = 1,50,100,150,\ldots,1000
    For x = -2,-1.9,-1,8,\ldots0,\ldots,1.9,2
        1)Generate B: }1000\mathrm{ Samples of Binomial (m,p) using inbuilt rbinom function
            Compute SB: (B-m*p)/((m*p(1-p))^(0.5))
        2)Compute y[x] : the proportion of samples in SB less than equal to }
        3)Repeat steps 1) and 2) }100\mathrm{ times and compute average -- my[x] over each trial.
        4)Calculate diff[m]= max(abs(my[x]-z[x]))
For m = 1,50,100,150,\ldots,1000
    Calculate error(m)= [p^2+(1-p)^2]/[2*(m*p*(1-p))^0.5]
Plot diff and error.
```

See if result is verified by picture. Can you do anything additional to verify the Theorem ?

