1. Rolling a die.
```
> x = c(1,2,3,4,5,6)
> probx= c(1/4,1/8,1/8,1/8,1/8,1/4)
> F16=sample(x, size=1500, replace=T, prob=probx)
```

(a) Describe what each R command is peforming in the above.
(b) Using the mean and var command find the mean and variance of F16. From this information alone what would you conclude is the range of the random variable F16.
(c) Does the mean and variance from the sample generated compare closely with the true mean and variance of F16.
2. Tossing a coin 10 times.

```
> b1 = rbinom(100,10,0.5)
> b2 = rbinom(100,10,0.25)
> b3 = rbinom(100,10,0.75)
```

(a) Using the ?rbinom explain what each of the above commands is performing in R
(b) Using the mean and var command find the mean and variance of b1,b2,b3. Compare them with the true mean and variance of the Binomial distribution.
3. geom_hist command.

```
> library(ggplot2)
> df1=data.frame(b1)
> p11= ggplot(df1) + geom_histogram(mapping=aes(x=b1), color="black", fill="NA", binwidth=1)
> p21= ggplot(df1) +
+ geom_histogram(mapping=aes(x=b1, y=..density..), color="black", fill="NA", binwidth=1)
```

(a) Explain what are the plots p11,p21 providing.
(b) Rewrite the code to provide the plots for b2 and b3.
(c) What can you say about the three plots ?
4. Density Approximation. The below code plots the function density fin the interval $(0,10)$ with $a=5, s=\sqrt{2.5}$ along with the plot p21.

```
> library(ggplot2)
density = function(x,a,s){ (1/((2*pi)^(0.5)*s ))* exp(-(x-a)^2/(2*s^2))}
> df1=data.frame(b1)
> p21= ggplot(df1) +
+ geom_histogram(mapping=aes(x=b1, y=..density..), color="black", fill="NA", binwidth=1) +
+ xlim(0,10) +
+ geom_function(fun=density, args=list(a=5,s=(2.5)^(0.5)))
```

(a) From the picture what does $\int_{3}^{6} \operatorname{density}(x, 5, \sqrt{2.5}) d x$ approximate ?
(b) If

$$
\text { Area under the histogram between } 3 \text { and } 7 \approx \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x
$$

then what would be your guess for a and b
(c) How would you try the same idea for b2 and b3? Would you get the same result ?
5. (Sums of Rolls) Suppose we wish to simulate in R the experiment that we did in class last week of Rolling a die and noting down its sum. We can use the sample, matrix and apply.
$>\mathrm{x}=\mathrm{c}(1,2,3,4,5,6)$
$>$ probx $=c(1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6)$
> Rolls=sample(x, size=1500, replace=T, prob=probx)
> Rollm=matrix (Rolls, nrow = 5)
> Rollsums $=$ apply(Rollm, 2, sum)
(a) Describe the commands matrix and apply
$>$ library (ggplot2)
> dfrolls = data.frame(Rollsums)
> mu = mean(dfrolls\$Rollsums)
> ggplot(data=dfrolls) + geom_histogram(mapping=aes(x=Rollsums,y=..density..), color="\#00846b", fill=NA, binwidth=1) + xlim(5,30)+geom_function(fun=density, args=list(a=mu, s= sigma), color="blac
(a) From the picture what does $\int_{12}^{21} \operatorname{density}(x, m u, \operatorname{sigma}) d x$ approximate ?
(b) If

$$
\text { Area under the histogram between } 12 \text { and } 21 \approx \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) d x
$$

then what would be your guess for a and b

