1. Suppose $X$ follows $\operatorname{Bernoulli}(p)$ distribution. Let $p=1 / 3$
(a) Simulate for $n=100 X_{1}, X_{2}, X_{3}, \ldots X_{n}$ i.i.d $X$
(b) Demonstrate the Law of Large numbers by plotting the sample mean $\bar{X}_{n}$ as a function of $n$.
(c) Using replicate command plot 15 independent trials of the above.
(d) Do the same when $p=0.001, n=100, p=0.5, n=100, p=0.99$ on different plots
2. We wish to compute

$$
\int_{a}^{b} f(x) d x
$$

using the Law of Large numbers.
(a) Generate samples of $X_{1}, X_{2}, \ldots X_{n}$ i.i.d. Uniform $(a, b)$. Justify

$$
(b-a) \sum_{i=1}^{n} \frac{f\left(X_{i}\right)}{n} \approx \int_{a}^{b} f(x) d x
$$

(b) Write an R-code to estimate the $\int_{0}^{7} \frac{16+\sin (x)}{x^{2}+4} d x$ using the procedure described in the previous part with $n=400$.
(c) Repeat the estimate 100 times and find the mean of these 100 simulations.
(d) Use the integrate command in $R$ to evaluate the integral. Compare the two answers.
3. Simulate 500 samples from each of the below distributions using their respective distribution function $F_{X}$ and/or the inbuilt runif.
(a) $X \sim \operatorname{Poisson}(10)$
(b) $X \sim$ p.d.f $f$ given by

$$
f(x)=\left\{\begin{array}{lc}
x & 0 \leq x \leq \sqrt{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

(c) $X, Y$ i.i.d $\sim \operatorname{Normal}(3,4)$

Problems due: 1,2

1. Suppose $p$ is the unknown probability of an event $A$, and we estimate $p$ by the sample proportion $\hat{p}$ based on an i.i.d. sample of size $n$.
(a) Design and implement the following simulation study to verify this behaviour. For $p=0.01$, $0.1,0.25,0.5,0.75,0.9$, and 0.99 ,
(i) Simulate 1000 values of $\hat{p}$ with $n=500$.
(ii) Simulate 1000 values of $\hat{p}$ with $n$ chosen according to the formula derived above.

In each case, you can think of the 1000 values as i.i.d. samples from the distribution of $\hat{p}$, and use the sample standard deviation as an estimate of $S D[\hat{p}]$. Plot the estimated values of $S D(\hat{p})$ against $p$ for both choices of $n$.
2. Consider Poisson $\lambda$ distribution.
(a) Show that both the sample mean and the sample variance of a sample obtained from the Poisson $(\lambda)$ distribution will be unbiased estimators of $\lambda$.
(b) For $\lambda=10,20,50$ simulate 100, 500, 1000 random observations from the Poisson $(\lambda)$ distribution for various values of $\lambda$ using the inbuilt function rpois.
(c) Explore the behaviour of the two estimates for each $\lambda$ as well as three sample sizes.
3. Biologists use a technique called "capture-recapture" to estimate the size of the population of a species that cannot be directly counted.
Suppose the unknown population size is $N$, and fifty members of the species are selected and given an identifying mark. Sometime later a sample of size twenty is taken from the population, and it is found to contain $X$ of the twenty previously marked. Equating the proportion of marked members in the second sample and the population, we have $\frac{X}{20}=\frac{50}{N}$, giving an estimate of $\hat{N}=\frac{1000}{X}$.
(a) Show that the distribution of $X$ has a hypergeometric distribution that involves $N$ as a parameter.
(b) Using the function rhyper. For each $N=50,100,200,300,400$, and 500, simulate 1000 values of $\hat{N}$ and use them to estimate $E[\hat{N}]$ and $\operatorname{Var}[\hat{N}]$. Plot these estimates as a function of $N$.
4. Suppose $p$ is the unknown probability of an event $A$, and we estimate $p$ by the sample proportion $\hat{p}$ based on an i.i.d. sample of size $n$.
(a) Write $\operatorname{Var}[\hat{p}]$ and $S D[\hat{p}]$ as functions of $n$ and $p$.
(b) Using the relations derived above, determine the sample size $n$, as a function of $p$, that is required to acheive $S D(\hat{p})=0.01$. How does this required value of $n$ vary with $p$ ?

