Ishaan Taneja

Grading:

30 marks- Complete submission of Problem 1,2
70 marks- Problem 1

1. Suppose p is the unknown probability of an event A, and we estimate p by the sample proportion \hat{p} based on an i.i.d. sample of size n.
(a) Write $\operatorname{Var}[\hat{p}]$ and $S D[\hat{p}]$ as functions of n and p.
(b) Using the relations derived above, determine the sample size n, as a function of p, that is required to acheive $S D(\hat{p})=0.01$. How does this required value of n vary with p ?
(c) Design and implement the following simulation study to verify this behaviour. For $p=0.01,0.1,0.25,0.5,0.75,0.9$, and 0.99 ,
(i) Simulate 1000 values of \hat{p} with $n=500$.
(ii) Simulate 1000 values of \hat{p} with n chosen according to the formula derived above.

In each case, you can think of the 1000 values as i.i.d. samples from the distribution of \hat{p}, and use the sample standard deviation as an estimate of $S D[\hat{p}]$. Plot the estimated values of $S D(\hat{p})$ against p for both choices of n.

Solution: 1
(a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d sample of size n .

The sample proportion p is given by $\hat{p}=\frac{\#\left\{X_{i} \in A\right\}}{n}$
Let,

$$
Z_{i}= \begin{cases}1 & ; \text { if } X_{i} \in A \\ 0 & ; \text { otherwise }\end{cases}
$$

Therefore, $P\left(Z_{i}=1\right)=P\left(X_{i} \in A\right)=p$ and $P\left(Z_{i}=0\right)=1-p$
Hence, $Z_{i} \sim \operatorname{Bernoulli}(p) ; \mathrm{i}=1,2, \ldots, \mathrm{n}$
Let us define a random variable, $Y=\sum_{i=1}^{n} Z_{i} \sim \operatorname{Binomial}(n, p)$
So, $\hat{p}=\frac{Y}{n}$

$$
\begin{aligned}
\operatorname{Var}(\hat{p}) & =\operatorname{Var}\left(\frac{Y}{n}\right) \\
& =\frac{1}{n^{2}} \operatorname{Var}(Y) \\
& =\frac{1}{n^{2}} n p(1-p) \\
\therefore \operatorname{Var}(\hat{p}) & =\frac{p(1-p)}{n}
\end{aligned}
$$

$$
\text { And, } S \cdot D(\hat{p})=\sqrt{\operatorname{Var}(\hat{p})}
$$

$$
\therefore S . D(\hat{p})=\sqrt{\frac{p(1-p)}{n}}
$$

(b)

$$
\begin{aligned}
S . D(\hat{p}) & =0.01 \\
\sqrt{\frac{p(1-p)}{n}} & =0.01 \\
\frac{p(1-p)}{n} & =0.0001 \\
\therefore n=f(p) & =10000 \times p(1-p) \\
f^{\prime}(p) & =1000(1-2 p)
\end{aligned}
$$

Since,

$$
f^{\prime}(p)= \begin{cases}<0 & \text {; if } p>1 / 2 \\ >0 & \text { if } p<1 / 2\end{cases}
$$

Therefore, n increases with increase in $p \in[0,0.5]$ and n decreases with increases in $p \in[0.5,1]$
(c)

```
(i) > s_sd_1=function(p){
    + s_1=c()
    + for (i in 1:length(p)){
    + p_hat=rbinom(1000,500,p[i])/500
    + s_1[i]=sd(p_hat)
    + }
    + return(s_1)
    + }
    (ii) > s_sd_2=function(p){
    + s_2=c()
    + for (i in 1:length(p)){
    + n=round(10000*p[i]*(1-p[i]))
    + p_hat=rbinom(1000,n,p[i])/n
    + s_2[i]=sd(p_hat)
    + }
    + return(s_2)
    + }
> p=c(0.01,0.1,0.25,0.5,0.75,0.9,0.99)
> df=data.frame(p,s_sd_1(p),s_sd_2(p))
> colnames(df)<-c('p','s_1','s_2')
> library(ggplot2)
> ggplot(df,aes(x=p))+geom_line(aes(y=s_1),colour='steelblue')+
+ labs(x='p',y='SD(p_hat)')+ggtitle("For n=500")
```


We observe that the $S D(\hat{p})$ increases till $\mathrm{p}=0.5$ and then decreases.

```
> ggplot(df,aes (x=p))+geom_line(aes(y=s_2),colour='steelblue')+
+ labs(x='p',y='SD(p_hat)')+ggtitle("For derived n")+
+ coord_cartesian(ylim=c(0,0.02))
```


For derived n

The value of $S D(\hat{p})$ remain close to 0.01 as 'n' is derived using that formula only.
2. Consider Poisson λ distribution.
(a) Show that both the sample mean and the sample variance of a sample obtained from the Poisson (λ) distribution will be unbiased estimators of λ.
(b) For $\lambda=10,20,50$ simulate $100,500,1000$ random observations from the $\operatorname{Poisson}(\lambda)$ distribution for various values of λ using the inbuilt function rpois.
(c) Explore the behaviour of the two estimates for each λ as well as three sample sizes.

Solution: 2
(a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be an i.i.d sample of size n from $\operatorname{Poisson}(\lambda)$ distribution.

Sample mean ; $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
Sample variance ; $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
Now,

$$
\begin{aligned}
E(\bar{X}) & =E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} \lambda \\
& =\frac{1}{n} n \lambda \\
\therefore E(\bar{X}) & =\lambda
\end{aligned}
$$

Hence, sample mean is an unbiased estimator of λ. And,

$$
\begin{aligned}
E\left(S^{2}\right) & =E\left(\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) \\
& =\frac{1}{n-1} E\left(\sum_{i=1}^{n}\left(X_{i}^{2}+\bar{X}^{2}-2 \bar{X} X_{i}\right)\right) \\
\therefore E\left(S^{2}\right) & =\frac{1}{n-1}\left(\sum_{i=1}^{n} E\left(X_{i}^{2}\right)-n E\left(\bar{X}^{2}\right)\right)
\end{aligned}
$$

We know that,
$E\left(X_{i}^{2}\right)=V\left(X_{i}\right)+\left[E\left(X_{i}\right)\right]^{2}=\lambda+\lambda^{2}$
and, $E\left(\bar{X}^{2}\right)=V(\bar{X})+[E(\bar{X})]^{2}=\frac{\lambda}{n}+\lambda^{2}$
Therefore,

$$
\begin{aligned}
E\left(S^{2}\right) & =\frac{1}{n-1}\left(\sum_{i=1}^{n}\left(\lambda+\lambda^{2}\right)-n\left(\frac{\lambda}{n}+\lambda^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n \lambda+n \lambda^{2}-\lambda-n \lambda^{2}\right) \\
& =\frac{1}{n-1}(n-1) \lambda \\
\therefore E\left(S^{2}\right) & =\lambda
\end{aligned}
$$

Hence, sample variance is an unbiased estimator of λ.
(b) $>\mathrm{n}=\mathrm{c}(100,500,1000)$
$>$ mean $=c()$
> d_mean=c()
> variance=c()
> d_variance=c()
> pois=function(lambda)\{

+ for(i in n)\{
$+\quad \mathrm{p}=\mathrm{rpois}(\mathrm{i}, \mathrm{l}$ ambda)
$+\quad$ mean=append(mean,mean(p))
$+\quad \operatorname{variance}=a p p e n d(v a r i a n c e, v a r(p))$
+ d_mean=append(d_mean,lambda-mean(p))
+ d_variance=append(d_variance,lambda-var(p))
$+\quad\}$
+ return(data.frame(n,mean, variance,d_mean,d_variance))
+ \}
(c) $>$ \#Lambda $=10$
$>$ pois(10)

	n	mean	variance	d_mean	d_variance
1	100	9.740	9.224646	0.260	0.77535354
2	500	10.144	9.446156	-0.144	0.55384369
3	1000	10.188	10.084741	-0.188	-0.08474074
$>$	\#Lambda $=20$				
$>$	pois (20)				

	n	mean	variance	d_mean	d_variance
1	100	19.980	23.73697	0.020	-3.7369697
2	500	19.912	19.14655	0.088	0.8534509
3	1000	20.031	19.18923	-0.031	0.8107718

> \#Lambda = 50
> pois(50)

	n	mean	variance	d_mean	d_variance
1	100	49.380	39.69253	0.620	10.3074747
2	500	50.136	48.47445	-0.136	1.5255471
3	1000	50.352	49.85395	-0.352	0.1460501

From the above tables, we can notice that with increase in the value of n, the difference between the sample mean and true mean (λ) and the sample variance and true variance (λ) is decreasing.
3. Biologists use a technique called "capture-recapture" to estimate the size of the population of a species that cannot be directly counted.

Suppose the unknown population size is N, and fifty members of the species are selected and given an identifying mark. Sometime later a sample of size twenty is taken from the population, and it is found to contain X of the twenty previously marked. Equating the proportion of marked members in the second sample and the population, we have $\frac{X}{20}=\frac{50}{N}$, giving an estimate of $\hat{N}=\frac{1000}{X}$.
(a) Show that the distribution of X has a hypergeometric distribution that involves N as a parameter.
(b) Using the function rhyper. For each $N=50,100,200,300,400$, and 500, simulate 1000 values of \hat{N} and use them to estimate $E[\hat{N}]$ and $\operatorname{Var}[\hat{N}]$. Plot these estimates as a function of N.

Solution: 3
(a) If the second sample is done at random and without replacement then,

Total population; $\mathrm{N}=N$
Number of objects with favorable feature; $\mathrm{K}=50$
Number of draws; $n=20$
Number of observed successes $=\mathrm{k}$
X represents the number of marked member of that species, in a sample of 20 taken randomly and without replacement.
$\therefore P(X=k)=\frac{{ }^{K} C_{k} \times{ }^{N-K} C_{n-k}}{{ }^{N} C_{n}} ; \max (0, n+K-N) \leq k \leq \min (K, n)$
i.e. $X \sim \operatorname{Hypergeometric}(N, 50,20)$
(b) $>\mathrm{n}=\mathrm{c}(50,100,200,300,400,500)$
> N_hat_mean=c ()
> N_hat_var=c()
> N_hat=c()
$>\operatorname{for}(\mathrm{j}$ in n$)\{$
$+\mathrm{N}=\mathrm{c}($)
$+\quad \mathrm{X}=\mathrm{c}()$
$+$
$+\quad X=$ rhyper $(1000,50, j-50,20)$
$+\quad \mathrm{X}[\mathrm{X}==0$] <- $50 * 20 / \mathrm{j}$ \#Replacing 0 values esle N_hat=Inf
$+\quad \mathrm{N}=1000 / \mathrm{X}$
$+$

+ N_hat_mean=append(N_hat_mean,mean(N))
+ N_hat_var=append(N_hat_var,var(N))
$+3$
> library (ggplot2)
> df=data.frame(n, N_hat_mean, N_hat_var)
> colnames(df)<-c('N','E(N_hat)','V(N_hat)')
$>\mathrm{df}$

```
        N E(N_hat) V(N_hat)
1 50 50.0000 0.0000
2 100 105.6388 661.6081
3 200 231.5589 15776.7240
4 300 366.5187 47283.6089
5400 486.682575281.4487
6 500 567.142978792.6248
> ggplot(df,aes(x=n))+geom_line(aes(y=N_hat_mean),colour='steelblue')+
+ labs(x='N',y='E(N_hat)')+ggtitle("N vs E(N_hat)")
```


From the plot, we can see that the $E(\hat{N})$ is close to the N.
> ggplot (df,aes $(x=n))+$ geom_line(aes ($\mathrm{y}=\mathrm{N} _$hat_var), colour='steelblue')+ $+\quad$ labs ($\mathrm{x}=\mathrm{'N}^{\prime}, \mathrm{y}=$ 'V(N_hat)') + ggtitle("N vs V(N_hat)")

N vs V (N_hat)

From the plot, we can see that with increase in N, the $\operatorname{Var}(\hat{N})$ increases sharply.

