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Grading:
30 marks- Complete submission of Problem 1,2
70 marks- Problem 1

1. Suppose p is the unknown probability of an event A, and we estimate p by the sample
proportion p̂ based on an i.i.d. sample of size n.

(a) Write V ar[p̂] and SD[p̂] as functions of n and p.

(b) Using the relations derived above, determine the sample size n, as a function of p,
that is required to acheive SD(p̂) = 0.01. How does this required value of n vary
with p?

(c) Design and implement the following simulation study to verify this behaviour. For
p = 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, and 0.99,

(i) Simulate 1000 values of p̂ with n = 500.

(ii) Simulate 1000 values of p̂ with n chosen according to the formula derived above.

In each case, you can think of the 1000 values as i.i.d. samples from the distribution of
p̂, and use the sample standard deviation as an estimate of SD[p̂]. Plot the estimated
values of SD(p̂) against p for both choices of n.

Solution: 1

(a) Let X1, X2,...,Xn be i.i.d sample of size n.

The sample proportion p is given by p̂ =
#{Xi ∈ A}

n
Let,

Zi =

{
1 ; if Xi ∈ A

0 ; otherwise

Therefore, P (Zi = 1) = P (Xi ∈ A) = p and P (Zi = 0) = 1− p
Hence, Zi ∼ Bernoulli(p) ; i=1,2,...,n
Let us define a random variable, Y =

∑n
i=1 Zi ∼ Binomial(n, p)

So, p̂ =
Y

n

V ar(p̂) = V ar

(
Y

n

)
=

1

n2
V ar(Y )

=
1

n2
np(1− p)

∴ V ar(p̂) =
p(1− p)

n

1



And, S.D(p̂) =
√
V ar(p̂)

∴ S.D(p̂) =

√
p(1− p)

n

(b)

S.D(p̂) = 0.01√
p(1− p)

n
= 0.01

p(1− p)

n
= 0.0001

∴ n = f(p) = 10000× p(1− p)

f ′(p) = 1000(1− 2p)

Since,

f ′(p) =

{
< 0 ; if p > 1/2

> 0 ; if p < 1/2

Therefore, n increases with increase in p ∈ [0, 0.5] and n decreases with increases in
p ∈ [0.5, 1]

(c) (i) > s_sd_1=function(p){

+ s_1=c()

+ for (i in 1:length(p)){

+ p_hat=rbinom(1000,500,p[i])/500

+ s_1[i]=sd(p_hat)

+ }

+ return(s_1)

+ }

(ii) > s_sd_2=function(p){

+ s_2=c()

+ for (i in 1:length(p)){

+ n=round(10000*p[i]*(1-p[i]))

+ p_hat=rbinom(1000,n,p[i])/n

+ s_2[i]=sd(p_hat)

+ }

+ return(s_2)

+ }

> p=c(0.01,0.1,0.25,0.5,0.75,0.9,0.99)

> df=data.frame(p,s_sd_1(p),s_sd_2(p))

> colnames(df)<-c('p','s_1','s_2')

> library(ggplot2)

> ggplot(df,aes(x=p))+geom_line(aes(y=s_1),colour='steelblue')+

+ labs(x='p',y='SD(p_hat)')+ggtitle("For n=500")
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For n=500

We observe that the SD(p̂) increases till p=0.5 and then decreases.

> ggplot(df,aes(x=p))+geom_line(aes(y=s_2),colour='steelblue')+

+ labs(x='p',y='SD(p_hat)')+ggtitle("For derived n")+

+ coord_cartesian(ylim=c(0,0.02))
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For derived n

The value of SD(p̂) remain close to 0.01 as ’n’ is derived using that formula only.

2. Consider Poisson λ distribution.

(a) Show that both the sample mean and the sample variance of a sample obtained from
the Poisson(λ) distribution will be unbiased estimators of λ.

(b) For λ = 10, 20, 50 simulate 100, 500, 1000 random observations from the Poisson(λ)
distribution for various values of λ using the inbuilt function rpois.
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(c) Explore the behaviour of the two estimates for each λ as well as three sample sizes.

Solution: 2

(a) Let X1, X2,...,Xn be an i.i.d sample of size n from Poisson(λ) distribution.

Sample mean ; X =
1

n

n∑
i=1

Xi

Sample variance ; S2 =
1

n− 1

n∑
i=1

(Xi −X)2

Now,

E(X) = E

(
1

n

n∑
i=1

Xi

)

=
1

n

n∑
i=1

E(Xi)

=
1

n

n∑
i=1

λ

=
1

n
nλ

∴ E(X) = λ

Hence, sample mean is an unbiased estimator of λ. And,

E(S2) = E

(
1

n− 1

n∑
i=1

(Xi −X)2

)

=
1

n− 1
E

(
n∑

i=1

(X2
i +X

2 − 2XXi)

)

∴ E(S2) =
1

n− 1

(
n∑

i=1

E(X2
i )− nE(X

2
)

)

We know that,
E(X2

i ) = V (Xi) + [E(Xi)]
2 = λ+ λ2

and, E(X
2
) = V (X) + [E(X)]2 =

λ

n
+ λ2

Therefore,

E(S2) =
1

n− 1

(
n∑

i=1

(λ+ λ2)− n(
λ

n
+ λ2)

)

=
1

n− 1
(nλ+ nλ2 − λ− nλ2)

=
1

n− 1
(n− 1)λ

∴ E(S2) = λ

Hence, sample variance is an unbiased estimator of λ.
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(b) > n=c(100,500,1000)

> mean=c()

> d_mean=c()

> variance=c()

> d_variance=c()

> pois=function(lambda){

+ for(i in n){

+ p=rpois(i,lambda)

+ mean=append(mean,mean(p))

+ variance=append(variance,var(p))

+ d_mean=append(d_mean,lambda-mean(p))

+ d_variance=append(d_variance,lambda-var(p))

+ }

+ return(data.frame(n,mean,variance,d_mean,d_variance))

+ }

(c) > #Lambda = 10

> pois(10)

n mean variance d_mean d_variance

1 100 9.740 9.224646 0.260 0.77535354

2 500 10.144 9.446156 -0.144 0.55384369

3 1000 10.188 10.084741 -0.188 -0.08474074

> #Lambda = 20

> pois(20)

n mean variance d_mean d_variance

1 100 19.980 23.73697 0.020 -3.7369697

2 500 19.912 19.14655 0.088 0.8534509

3 1000 20.031 19.18923 -0.031 0.8107718

> #Lambda = 50

> pois(50)

n mean variance d_mean d_variance

1 100 49.380 39.69253 0.620 10.3074747

2 500 50.136 48.47445 -0.136 1.5255471

3 1000 50.352 49.85395 -0.352 0.1460501

From the above tables, we can notice that with increase in the value of n, the difference
between the sample mean and true mean (λ) and the sample variance and true variance
(λ) is decreasing.

3. Biologists use a technique called “capture-recapture” to estimate the size of the population
of a species that cannot be directly counted.

Suppose the unknown population size is N , and fifty members of the species are selected
and given an identifying mark. Sometime later a sample of size twenty is taken from the
population, and it is found to contain X of the twenty previously marked. Equating the
proportion of marked members in the second sample and the population, we have X

20 = 50
N ,

giving an estimate of N̂ = 1000
X .
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(a) Show that the distribution of X has a hypergeometric distribution that involves N
as a parameter.

(b) Using the function rhyper. For each N = 50, 100, 200, 300, 400, and 500, simulate
1000 values of N̂ and use them to estimate E[N̂ ] and V ar[N̂ ]. Plot these estimates
as a function of N .

Solution: 3

(a) If the second sample is done at random and without replacement then,
Total population; N = N
Number of objects with favorable feature; K = 50
Number of draws; n = 20
Number of observed successes = k
X represents the number of marked member of that species, in a sample of 20 taken
randomly and without replacement.

∴ P (X = k) =
KCk × N−KCn−k

NCn
; max(0, n+K −N) ≤ k ≤ min(K,n)

i.e. X ∼ Hypergeometric(N, 50, 20)

(b) > n=c(50,100,200,300,400,500)

> N_hat_mean=c()

> N_hat_var=c()

> N_hat=c()

> for(j in n){

+ N=c()

+ X=c()

+

+ X=rhyper(1000,50,j-50,20)

+ X[X==0] <- 50*20/j #Replacing 0 values esle N_hat=Inf

+ N=1000/X

+

+ N_hat_mean=append(N_hat_mean,mean(N))

+ N_hat_var=append(N_hat_var,var(N))

+ }

> library(ggplot2)

> df=data.frame(n,N_hat_mean,N_hat_var)

> colnames(df)<-c('N','E(N_hat)','V(N_hat)')

> df

N E(N_hat) V(N_hat)

1 50 50.0000 0.0000

2 100 105.6388 661.6081

3 200 231.5589 15776.7240

4 300 366.5187 47283.6089

5 400 486.6825 75281.4487

6 500 567.1429 78792.6248

> ggplot(df,aes(x=n))+geom_line(aes(y=N_hat_mean),colour='steelblue')+

+ labs(x='N',y='E(N_hat)')+ggtitle("N vs E(N_hat)")
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From the plot, we can see that the E(N̂) is close to the N .

> ggplot(df,aes(x=n))+geom_line(aes(y=N_hat_var),colour='steelblue')+

+ labs(x='N',y='V(N_hat)')+ggtitle("N vs V(N_hat)")
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From the plot, we can see that with increase in N , the V ar(N̂) increases sharply.
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