Ishaan Taneja

Grading:

30 marks- Complete submission of Problem 2,3 70 marks- Problem 3

- 1. For each of the distributions: Beta(10,2) and Beta(10,10)
 - (a) Generate 100 trials of 5, 50, 500 samples respectively.
 - (b) Using the data decide if the conclusion of the Central Limit Theorem applies in each of the three cases, 5, 50, 500.

Solution: 1

```
> beta_plot=function(n,a,b){
+    ssize=100 #Number of trials
+ mean_1=c()
+ for(i in 1:ssize){
+    beta_1=rbeta(n,a,b)
+    mean_1[i]=mean(beta_1)
+ }
+ par(mfrow=c(1,2))
+ hist(mean_1,main=paste("Histogram for n=",n),xlab=paste("Means"))
+ qqnorm(mean_1,pch=20)
+ qqline(mean_1,col="red")
+ }
```

For Beta(10,2):

> beta_plot(5,10,2)

It can be seen from histogram that data is left skewed. Also, from the QQ-Plot we can

conclude that the data distribution is not normal. Hence, conclusion of Central Limit Theorem doesn't applies in this case.

> beta_plot(50,10,2)

It can be seen from histogram that data tends to symmetric with increase in 'n'. Also, from the QQ-Plot we can conclude that the data distribution is approaching normal.

> beta_plot(500,10,2)

Again, it can be seen from histogram that data tends to symmetric with increase in 'n'. Also, from the QQ-Plot we can conclude that the data distribution is more normal than previous cases.

For Beta(10,10):

> beta_plot(5,10,10)

It can be seen from histogram that data is close to symmetric. Also, from the QQ-Plot we can conclude that the data distribution is close to normal, since most of the points are on the straight line.

> beta_plot(50,10,10)

It can be seen from histogram that data tends to symmetric with increase in 'n'. Also, from the QQ-Plot we can conclude that the data distribution is approaching normal.

> beta_plot(500,10,10)

Histogram for n= 500 0.505

Again, it can be seen from histogram that data tends to symmetric with increase in 'n'. Also, from the QQ-Plot we can conclude that the data distribution is normal.

Normal Q-Q Plot

Hence, in case of Beta(5,10), as the sample size increases the histogram become more symmetric and the points of QQ plot stats coinciding with the normal line i.e. data is approaching normal distribution with increase in 'n'.

Whereas, in case of Beta(10,10), even a small sample size (n=5) is giving a good normal approximation because population distribution is symmetric.

- 2. Consider the Poisson(1) distribution.
 - (a) Generate 100 trials of 500 samples respectively.
 - (b) Find the 95%-confidence interval for the mean in each trial.
 - (c) Compute the number of trials in which the true mean lies in the interval.

Solution: 2

```
(a) > mean_p=c()
   > for(i in 1:100){
       x=rpois(500,1) #Generating 100 trials of 500
   + mean_p[i]=mean(x)
   + }
(b) > sd_p=sd(mean_p)
   > #Computing 95% confidence interval
   > confidence_interval=function(x){
       z=qnorm((1-0.95)/2,lower.tail = FALSE)
       sd_xbar=sd_p*sqrt(1/length(x))
       c(mean(x)-z*sd_xbar, mean(x)+z*sd_xbar)
   > c_i=sapply(mean_p,confidence_interval)
   > c_i
              [,1]
                        [,2]
                                   [,3]
                                             [,4]
                                                       [,5]
                                                                  [,6]
                                                                            [,7]
   [1,] 0.9205189 0.8905189 0.9425189 0.9285189 0.8765189 0.9425189 0.9685189
   [2,] 1.0954811 1.0654811 1.1174811 1.1034811 1.0514811 1.1174811 1.1434811
```

```
[.8]
                    [,9] [,10] [,11] [,12] [,13] [,14]
   [1,] 0.8865189 0.9665189 0.9605189 0.9845189 0.8725189 1.020519 0.9705189
   [2,] 1.0614811 1.1414811 1.1354811 1.1594811 1.0474811 1.195481 1.1454811
            [,15]
                     [,16]
                            [,17]
                                     [,18]
                                                [,19]
                                                           [,20]
   [1,] 0.8485189 0.9405189 0.8845189 0.9125189 0.9205189 0.9365189 0.8845189
   [2,] 1.0234811 1.1154811 1.0594811 1.0874811 1.0954811 1.1114811 1.0594811
            [,22]
                     [,23]
                              [,24]
                                       [,25]
                                                 [,26]
                                                           [,27]
                                                                     [,28]
   [1,] 0.9365189 0.9205189 0.8145189 0.8825189 0.8925189 0.8605189 0.8665189
   [2,] 1.1114811 1.0954811 0.9894811 1.0574811 1.0674811 1.0354811 1.0414811
                     [.30]
                             [,31]
                                     [,32]
                                              [.33]
                                                        [,34]
            [,29]
   [1,] 0.8965189 0.9545189 1.044519 1.048519 0.9225189 0.8045189 0.9345189
   [2,] 1.0714811 1.1294811 1.219481 1.223481 1.0974811 0.9794811 1.1094811
           [,36]
                    [,37] [,38]
                                      [,39]
                                                [,40]
                                                           [,41]
   [1,] 0.9485189 0.8465189 0.9605189 0.9345189 0.8765189 0.9145189 0.9585189
   [2,] 1.1234811 1.0214811 1.1354811 1.1094811 1.0514811 1.0894811 1.1334811
                            [,45]
                                      [,46]
                                               [,47]
                    [,44]
                                                          [,48]
   [1,] 0.9225189 0.9025189 1.014519 0.9045189 0.9045189 0.9405189 0.9065189
   [2,] 1.0974811 1.0774811 1.189481 1.0794811 1.0794811 1.1154811 1.0814811
                    [,51] [,52]
                                      [,53]
                                                [,54]
                                                          [,55]
            [,50]
   [1,] 0.9305189 0.9105189 0.9765189 0.8365189 0.9105189 0.8365189 0.9325189
   [2,] 1.1054811 1.0854811 1.1514811 1.0114811 1.0854811 1.0114811 1.1074811
                            [,59]
                                       [,60]
           [,57]
                     [,58]
                                                [,61]
                                                           [,62]
   [1,] 0.9325189 0.9625189 0.8545189 0.9665189 0.9125189 0.9845189 0.9305189
   [2,] 1.1074811 1.1374811 1.0294811 1.1414811 1.0874811 1.1594811 1.1054811
                   [,65]
                            [,66] [,67]
                                               [,68]
                                                           [,69]
   [1,] 0.9025189 0.9265189 0.9045189 0.8665189 0.9525189 0.9545189 0.9765189
   [2,] 1.0774811 1.1014811 1.0794811 1.0414811 1.1274811 1.1294811 1.1514811
           [,71]
                     [,72]
                              [,73]
                                       [,74]
                                                [,75]
                                                           [,76]
   [1,] 0.8565189 0.9025189 0.9045189 0.9205189 0.9545189 0.8805189 0.9285189
   [2,] 1.0314811 1.0774811 1.0794811 1.0954811 1.1294811 1.0554811 1.1034811
                   [,79] [,80] [,81] [,82]
                                                           [,83]
   [1,] 0.9445189 0.9385189 0.9245189 0.8965189 0.9225189 0.9205189 0.9085189
   [2,] 1.1194811 1.1134811 1.0994811 1.0714811 1.0974811 1.0954811 1.0834811
                   [,86] [,87] [,88] [,89]
                                                         [,90]
   [1,] 0.9245189 0.9165189 0.9185189 0.9645189 0.9105189 0.9725189 0.8705189
   [2,] 1.0994811 1.0914811 1.0934811 1.1394811 1.0854811 1.1474811 1.0454811
                    [,93] [,94] [,95]
                                               [,96]
           [,92]
                                                         [,97]
   [1,] 0.8725189 0.8945189 0.9545189 0.9145189 1.008519 0.9585189 0.8965189
   [2,] 1.0474811 1.0694811 1.1294811 1.0894811 1.183481 1.1334811 1.0714811
           [,99]
                  [,100]
   [1,] 0.9105189 0.9325189
   [2,] 1.0854811 1.1074811
(c) > true_mean=1 #Lambda=1
   > TRUEIN=(c_i[1,]-1)*(c_i[2,]-1)<0
   > tab=table(TRUEIN)
   > tab
```

TRUEIN

```
FALSE TRUE
    7 93
> sprintf("The number of times true mean lies in the intervals =%d",tab[2][1])
[1] "The number of times true mean lies in the intervals =93"
```

- 3. The dataset BangaloreRain.csv in the course website at: https://www.isibang.ac.in/~athreya/Teaching/PaSwR/BngaloreRain.csv
 - (a) Decide if any month's 100 year rainfail is Normally distributed.
 - (b) Calculate the yearly total rain fall for each of the 100 years.
 - (c) Plot the histogram and Decide if the distribution is Normal.
 - (d) Find a 95% confidence interval for the expected annual rainfall in Bangalore.

Solution: 3


```
> par(mfrow=c(3,4))
> for(i in 2:13){
        qqnorm(df[[i]],pch=20,main=paste("Month:",i-1))
        qqline(df[[i]],col='red')
+ }
Sample Quantiles
                                 Sample Quantiles
                                                                                                   Sample Quantiles
                                                                  Sample Quantiles
                                                                        9
      15
                                       30
                                                                                                         100
                                                                        4
      10
                                       20
                                                                                                         20
                                                                        20
                                       10
                                                                        0
                 0
                       2
                                                  0
                                                        2
                                                                              -2
                                                                                   0
                                                                                         2
                                                                                                               -2
                                                                                                                          2
            -2
                                                                                                                    0
       Theoretical Quantiles
                                        Theoretical Quantiles
                                                                         Theoretical Quantiles
                                                                                                          Theoretical Quantiles
                                       200
Sample Quantiles
                                 Sample Quantiles
                                                                                                   Sample Quantiles
                                                                  Sample Quantiles
                                                                        150
                                                                                                         150
                                       100
                                       20
                                                                        20
      20
                                                                                                         50
            -2
                 0
                       2
                                             -2
                                                  0
                                                        2
                                                                              -2
                                                                                   0
                                                                                         2
                                                                                                               -2
                                                                                                                    0
                                                                                                                          2
       Theoretical Quantiles
                                        Theoretical Quantiles
                                                                         Theoretical Quantiles
                                                                                                          Theoretical Quantiles
                                                                        250
Sample Quantiles
                                 Sample Quantiles
                                                                  Sample Quantiles
                                                                                                   Sample Quantiles
                                       250
                                                                                                         9
                                                                        150
      150
                                                                                                         4
                                       150
                                                                                                         20
                                                                        20
      20
                                       20
                 0
                                                  0
                                                                                    0
                                                        2
                                                                                                                     0
            -2
                                             -2
                                                                              -2
                                                                                                               -2
                                        Theoretical Quantiles
                                                                         Theoretical Quantiles
                                                                                                          Theoretical Quantiles
       Theoretical Quantiles
```

From the histogram and QQ Plots, we can see that the 100 years rainfall in the months of of September and October are fairly normal.

```
(b) > Yearly_rain=rowSums(df[,2:13])
   > Yearly_rain
                                        772.655
      [1]
           839.196 885.426 1207.198
                                                 707.271
                                                           908.493
                                                                    783.518
                                                                              528.732
      [9]
          948.122 1004.432
                              730.049
                                        856.961
                                                 578.097
                                                           693.868
                                                                    826.053 1239.555
     [17]
           862.039
                    683.766
                              952.050
                                        592.117
                                                 814.067
                                                           822.288
                                                                    588.502
                                                                              683.451
     [25]
           768.307
                    674.042
                              580.463
                                        922.159
                                                 776.576
                                                           974.938
                                                                    637.935
                                                                              936.440
     [33] 1089.707
                    662.077
                              900.988
                                        821.416
                                                 807.853
                                                           658.934
                                                                    876.928
                                                                              985.239
           793.846
     [41]
                    733.979
                             1067.055
                                        877.299
                                                 555.482
                                                           983.474
                                                                    728.105
                                                                              892.919
     [49]
           848.229
                    738.061
                              783.783
                                        728.705 1003.849
                                                           838.300
                                                                    852.992
                                                                              914.995
```

```
Γ57]
      715.581 1015.276
                         862.460
                                   805.080
                                            841.178
                                                      987.809
                                                                865.976 1089.027
[65]
      556.088 1182.929
                         696.461
                                   725.312 1020.702
                                                      863.189
                                                                825.656
                                                                         850.930
[73]
      810.674
               788.415 1002.065
                                   629.694 1038.282
                                                      749.111 1039.553
                                                                         719.099
[81]
      838.170
               593.735
                         831.284
                                   742.650
                                            604.686
                                                      906.760
                                                                729.308 1041.755
[89]
      864.628
               698.485
                         996.754
                                   819.437
                                            933.128
                                                      602.847
                                                                941.275 1081.408
                                                      748.194
[97] 1091.201 1218.563
                         922.834 1000.767
                                            731.834
```

(c) > hist(Yearly_rain)

Histogram of Yearly_rain

From the above histogram, the distribution of data of annual rainfall is nearly normal.

```
(d) > z=qnorm((1-0.95)/2,lower.tail = FALSE)
    > std_m=sd(Yearly_rain)/sqrt(length(Yearly_rain))
    > c_i=c(mean(Yearly_rain)-z*std_m,mean(Yearly_rain)+z*std_m)
    > c_i
    [1] 807.9882 869.3301
    95% confidence interval of the expected annual rainfall = (807.9882, 869.3301)
```

4. Two types of coin are produced at a factory: a fair coin and a biased one that comes up heads 55% of the time. We have one of these coins but do not know whether it is a fair or biased coin. In order to ascertain which type of coin we have, we shall perform the following statistical test. We shall toss the coin 1000 times. If the coin comes up heads 525 or more times we shall conclude that it is a biased coin. Otherwise, we shall conclude that it is fair. If the coin is actually fair, what is the probability that we shall reach a false conclusion? What would it be if the coin were biased?

Solution: 4 n=1000

Let X be a random variable representing the number of heads in 1000 tosses of a fair coin. X \sim Binomial(1000,0.5)

Let Y be a random variable representing the number of heads in 1000 tosses of a biased coin.

 $Y \sim Binomial(1000, 0.55)$

Let us define the events:

B: The biased coin is tossed.

F: The fair coin is tossed.

E: Number of heads are 525 or more in 1000 tosses of a coin.

$$P(E|F) = P(X > 525)$$

$$= P\left(\frac{X - E(X)}{S \cdot D(X)} \ge \frac{525 - E(X)}{S \cdot D(X)}\right)$$

$$= P\left(\frac{X - (1000 \times 0.5)}{\sqrt{1000 \times 0.5 \times (1 - 0.5)}} \ge \frac{525 - (1000 \times 0.5)}{\sqrt{1000 \times 0.5 \times (1 - 0.5)}}\right)$$

$$= P\left(Z_1 \ge \frac{525 - 500}{\sqrt{250}}\right) \qquad \text{(where, } Z_1 \sim \text{Normal}(0,1))$$

$$= P(Z_1 \ge 1.581139)$$

$$= 1 - P(Z_1 < 1.581139)$$

$$= 1 - P(E|F) = 0.0569$$

Hence, the probability that we reach a false conclusion with a fair coin is 0.0569.

$$P(E^{c}|B) = P(Y < 525)$$

$$= P\left(\frac{Y - E(Y)}{S \cdot D(Y)} < \frac{525 - E(Y)}{S \cdot D(Y)}\right)$$

$$= P\left(\frac{Y - (1000 \times 0.55)}{\sqrt{1000 \times 0.55 \times (1 - 0.55)}} < \frac{525 - (1000 \times 0.55)}{\sqrt{1000 \times 0.55 \times (1 - 0.55)}}\right)$$

$$= P\left(Z_{2} < \frac{525 - 550}{\sqrt{247 \cdot 5}}\right) \qquad \text{(where, } Z_{2} \sim \text{Normal}(0,1))$$

$$= P(Z_{2} < -1.589104)$$

$$\therefore P(E^{c}|B) = 0.0560$$

Hence, the probability that we reach a false conclusion with a biased coin is 0.0560.

5. The length of time (in appropriate units) that a certain type of component functions before failing is a random variable with probability density function

$$f(x) = \begin{cases} 2x & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

Once the component fails it is immediately replaced with another one of the same type. Using the central limit theorem approximation, can you find, how many components would one need to have on hand to be approximately 90% certain that the stock would last at least 35 units of time?

Solution: 5

$$E(X) = \int_0^1 x \times 2x dx$$

$$= \frac{2x^3}{3} \Big|_0^1$$

$$= \frac{2}{3}(1^3 - 0^3)$$

$$\therefore E(X) = \frac{2}{3}$$

And,

$$E(X^2) = \int_0^1 x^2 \times 2x dx$$
$$= \frac{2x^4}{4} \Big|_0^1$$
$$= \frac{1}{2} (1^4 - 0^4)$$
$$\therefore E(X^2) = \frac{1}{2}$$

Hence,

$$V(X) = E(X^2) - (E(X))^2$$

$$= \frac{1}{2} - \left(\frac{2}{3}\right)^2$$

$$= \frac{1}{2} - \frac{4}{9}$$

$$\therefore V(X) = \frac{1}{18}$$

Let, Y be the sum of independent X_i 's i.e. $Y = \sum_{i=1}^n X_i$ Then, $E(Y) = nE(X) = \frac{2n}{3}$ and, $V(Y) = nV(X) = \frac{n}{18}$ i.e. $\sum_{i=1}^n X_i = Y \sim \text{Normal}(2n/3, n/18)$ Therefore,

$$P(Y \ge 35) = P\left(\frac{Y - E(Y)}{S.D(Y)} \ge \frac{35 - E(Y)}{S.D(Y)}\right)$$

= $P\left(Z \ge \frac{35 - \frac{2n}{3}}{\sqrt{n/18}}\right) = 0.90$ (given)

where, $Z \sim \text{Normal}(0,1)$ Also, we know that, $P(Z \ge -1.28) = 0.90$ Hence,

$$\frac{35 - \frac{2n}{3}}{\sqrt{n/18}} = -1.28$$
$$35 - \frac{2n}{3} = -1.28 \times \sqrt{\frac{n}{18}}$$

On solving, we get $n \approx 56$

Hence, One needs to have hand on approximately 56 components to be approximately 90% certain that the stock would last at least 35 units of time.