Ishaan Taneja

Grading:

30 marks- Complete submission of Problem 1,3,5,7
70 marks- Problem 3

From Probability and Statistics with Examples Using R

1. Exercise 3.2.4

Solution: 1
(a) Range $(\mathrm{X})=\{0,1,2\}$

Range $(\mathrm{Y})=\{0,1,2\}$

Y / X	$X=0$	$X=1$	$X=2$	$P(Y=y)$
$\mathrm{Y}=0$	$1 / 12$	0	$3 / 12$	$4 / 12$
$\mathrm{Y}=1$	$2 / 12$	$1 / 12$	0	$3 / 12$
$\mathrm{Y}=2$	$3 / 12$	$1 / 12$	$1 / 12$	$5 / 12$
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$6 / 12$	$2 / 12$	$4 / 12$	

Therefore, marginal distribution of X is:
$\mathrm{P}(\mathrm{X}=0)=\frac{6}{12} \quad ; \quad \mathrm{P}(\mathrm{X}=1)=\frac{2}{12} \quad$ and, $\mathrm{P}(\mathrm{X}=2)=\frac{4}{12}$
And, marginal distribution of Y is:
$\mathrm{P}(\mathrm{Y}=0)=\frac{4}{12} \quad ; \quad \mathrm{P}(\mathrm{Y}=1)=\frac{3}{12} \quad$ and, $\mathrm{P}(\mathrm{Y}=2)=\frac{5}{12}$
(b) Conditional distribution of X given $\mathrm{Y}=2$ is:
$\mathrm{P}(\mathrm{X}=\mathrm{x} \mid \mathrm{Y}=2)=\frac{P(X=x \cap Y=2)}{P(Y=2)} ; \mathrm{x}=0,1,2$
Therefore,

$$
\begin{aligned}
P(X=0 \mid Y=2) & =\frac{P(X=0 \cap Y=2)}{P(Y=2)} \\
& =\frac{3 / 12}{5 / 12} \\
& =\frac{3}{5} \\
P(X=1 \mid Y=2) & =\frac{P(X=1 \cap Y=2)}{P(Y=2)} \\
& =\frac{1 / 12}{5 / 12}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5} \\
P(X=2 \mid Y=2) & =\frac{P(X=2 \cap Y=2)}{P(Y=2)} \\
& =\frac{1 / 12}{5 / 12} \\
& =\frac{1}{5}
\end{aligned}
$$

(c) Conditional distribution of Y given $\mathrm{X}=2$ is:
$\mathrm{P}(\mathrm{Y}=\mathrm{y} \mid \mathrm{X}=2)=\frac{P(Y=y \cap X=2)}{P(X=2)} ; \mathrm{y}=0,1,2$
Therefore,

$$
\begin{aligned}
P(Y=0 \mid X=2) & =\frac{P(Y=0 \cap X=2)}{P(X=2)} \\
& =\frac{3 / 12}{4 / 12} \\
& =\frac{3}{4} \\
P(Y=1 \mid X=2) & =\frac{P(Y=1 \cap X=2)}{P(X=2)} \\
& =\frac{0}{4 / 12} \\
& =0 \\
P(Y=2 \mid X=2) & =\frac{P(Y=2 \cap X=2)}{P(X=2)} \\
& =\frac{1 / 12}{4 / 12} \\
& =\frac{1}{4}
\end{aligned}
$$

(d) The random variables X and Y are independent if and only if $P(X=x \cap Y=y)=P(X=x) P(Y=y) ; x \in \operatorname{Range}(X), y \in \operatorname{Range}(Y)$

$$
\begin{aligned}
P(X=0, Y=0) & =\frac{P(X=0 \cap Y=0)}{P(Y=0)} \\
& =\frac{1 / 12}{4 / 12} \\
& =\frac{1}{4}
\end{aligned}
$$

And,

$$
P(X=0) P(Y=0)=\left(\frac{6}{12}\right)\left(\frac{4}{12}\right)
$$

$$
\begin{aligned}
& =\frac{1}{6} \\
& \neq P(X=0 \cap Y=0)
\end{aligned}
$$

Hence, X and Y are not independent random variables.
2. Exercise 3.2.5

Solution: 2
Range $(\mathrm{X})=\{0,1\}$
$\mathrm{P}(\mathrm{X}=0)=\frac{1}{3}$ and $\mathrm{P}(\mathrm{X}=1)=\frac{2}{3}$
Range $(\mathrm{Y})=\{0,1,2\}$
$\mathrm{P}(\mathrm{Y}=0)=\frac{1}{5}, \mathrm{P}(\mathrm{Y}=1)=\frac{1}{5}$ and $\mathrm{P}(\mathrm{Y}=2)=\frac{3}{5}$
Since, X and Y are independent random variables.
$\therefore P(X=x \cap Y=y)=P(X=x) P(Y=y)$
The joint distribution of X and Y is:

Y / X	$X=0$	$X=1$	$P(Y=y)$
$\mathrm{Y}=0$	$1 / 15$	$2 / 15$	$1 / 5$
$\mathrm{Y}=1$	$1 / 15$	$2 / 15$	$1 / 5$
$\mathrm{Y}=2$	$3 / 15$	$6 / 15$	$3 / 5$
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$1 / 3$	$2 / 3$	

3. Exercise 3.2.9

Solution: 3
$\mathrm{N}=$ Number of earthquakes in a year
$\mathrm{M}=$ Number of earthquakes in a year with magnitude at least 5
$N \sim \operatorname{Poisson}(\lambda)$
$\mathrm{P}(\mathrm{N}=\mathrm{n})=\frac{e^{-\lambda} \lambda^{n}}{n!} ; \mathrm{n}=0,1,2, \ldots, \infty$
And,
$(M \mid N=n) \sim \operatorname{Binomial}(n, p)$
$\mathrm{P}(\mathrm{M}=\mathrm{m} \mid \mathrm{N}=\mathrm{n})={ }^{n} C_{m} p^{m}(1-p)^{n-m} ; \mathrm{m}=0,1,2, \ldots, n$
(a) The joint distribution of M and N is:

$$
\begin{aligned}
& P(M=m \cap N=n)=P(M=m \mid N=n) P(N=n) \\
& ={ }^{n} C_{m} p^{m}(1-p)^{n-m} e^{-\lambda} \frac{\lambda^{n}}{n!} \\
& =\frac{n!}{m!(n-m)!} p^{m}(1-p)^{n-m} e^{-\lambda} \frac{\lambda^{n}}{n!} \\
& =\frac{1}{m!(n-m)!} p^{m}(1-p)^{n-m} e^{-\lambda} \lambda^{n} \\
& \therefore P(M=m \cap N=n)=\left\{\begin{array}{cl}
\frac{1}{m!(n-m)!} p^{m}(1-p)^{n-m} e^{-\lambda} \lambda^{n} & ; \text { for } \mathrm{m}=0,1,2, \ldots, \mathrm{n} \text { and } \mathrm{n}=\mathrm{m}, \mathrm{~m}+1, \ldots, \infty \\
0 & ; \text { otherwise }
\end{array}\right.
\end{aligned}
$$

(b) The marginal distribution of M is determined by:

$$
P(M=m)=\sum_{n=m}^{\infty} P(M=m \cap N=n)
$$

$$
\begin{gathered}
=\sum_{n=m}^{\infty} \frac{1}{m!(n-m)!} p^{m}(1-p)^{n-m} e^{-\lambda} \lambda^{n} \\
\therefore P(M=m)=\frac{1}{m!} e^{-\lambda}(\lambda p)^{m} \sum_{n=m}^{\infty} \frac{\lambda^{n-m}}{(n-m)!}(1-p)^{n-m} ; m>0
\end{gathered}
$$

(c) Put $\mathrm{k}=\mathrm{n}-\mathrm{m}$

If $n=m \Longrightarrow k=n-m=0$
and, if $n=\infty \Longrightarrow k=n-m=\infty$
Hence,

$$
P(M=m)=\frac{1}{m!} e^{-\lambda}(\lambda p)^{m} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}(1-p)^{k} ; m>0
$$

(d) Using the infinite series equality $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$, we get:

$$
\begin{aligned}
P(M=m) & =\frac{1}{m!} e^{-\lambda}(\lambda p)^{m} e^{\lambda(1-p)} \\
& =\frac{1}{m!} e^{-\lambda(1-(1-p))}(\lambda p)^{m} \\
\therefore P(M=m) & =\frac{1}{m!} e^{-(\lambda p)}(\lambda p)^{m} ; m>0
\end{aligned}
$$

Hence, $M \sim \operatorname{Poisson}(\lambda p)$
4. Exercise 3.3.7

Solution: 4
Let $\mathrm{X} \sim \operatorname{Geometric}(\mathrm{p})$ and $\mathrm{Y} \sim \operatorname{Geometric}(\mathrm{p})$ be independent. $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
(a) Range $(\mathrm{X})=\{1,2,3, \ldots\}$

Range $(\mathrm{Y})=\{1,2,3, \ldots\}$
\Longrightarrow Range $(\mathrm{Z})=\{2,3,4, \ldots\}$
(b)

$$
\begin{aligned}
P(Z=n) & =P(X+Y=n) \\
& =P\left(\cup_{i=1}^{n-1}(X=i, Y=n-i)\right) \\
& =\sum_{i=1}^{n-1} P(X=i, Y=n-i) \quad \text { (Mutually exclusive events) } \\
& =\sum_{i=1}^{n-1} P(X=i) P(Y=n-i) \quad(\mathrm{X} \text { and } \mathrm{Y} \text { are independent random variables) } \\
& =\sum_{i=1}^{n-1} p(1-p)^{i-1} \times p(1-p)^{n-i-1} \\
& =\sum_{i=1}^{n-1} p^{2}(1-p)^{n-2} \\
& =p^{2}(1-p)^{n-2} \sum_{i=1}^{n-1} 1
\end{aligned}
$$

$$
\therefore P(Z=n)=(n-1) p^{2}(1-p)^{n-2} ; n=2,3,4, \ldots
$$

(c) For $\mathrm{n}=2$,

$$
P(Z=2)=(2-1) p^{2}(1-p)^{2-2}
$$

$\therefore P(Z=2)=p^{2}$
For $\mathrm{n}=3$,
$P(Z=3)=(3-1) p^{2}(1-p)^{3-2}$
$\therefore P(Z=3)=2 p^{2}(1-p)$
Now, we have to obtain the value of 'p' such that:

$$
\begin{aligned}
P(Z=3) & >P(Z=2) \\
2 p^{2}(1-p) & >p^{2} \\
p^{2}(2-2 p-1) & >0
\end{aligned}
$$

Since, $p^{2}>0$
$\Longrightarrow 2-2 p-1>0$
$\therefore p<\frac{1}{2}$
Hence, for all $p<0.5$, the $\mathrm{P}(\mathrm{Z}=3)$ is larger than $\mathrm{P}(\mathrm{Z}=2)$.
5. Exercise 3.3.11

Solution: 5
X_{1}, X_{2}, X_{3} and X_{4} are i.i.d Bernoulli(p)
$Y=X_{1}+X_{2} \sim \operatorname{Binomial}(2, p)$
$Y=X_{3}+X_{4} \sim \operatorname{Binomial}(2, p)$
(a)

$$
\begin{aligned}
P(Y=y \cap Z=z) & =P\left(X_{1}+X_{2}=y \cap X_{3}+X_{4}=z\right) \\
& =\sum_{x_{1} \in \operatorname{Range}\left(X_{1}\right)} \sum_{x_{3} \in \operatorname{Range}\left(X_{3}\right)} P\left(X_{1}=x_{1} \cap X_{2}=y-x_{1} \cap X_{3}=x_{3} \cap X_{4}=z-x_{3}\right) \\
& =\sum_{x_{1} \in \operatorname{Range}\left(X_{1}\right)} P\left(X_{1}=x_{1}\right) P\left(X_{2}=y-x_{1}\right) P\left(X_{3}=x_{3}\right) P\left(X_{4}=z-x_{3}\right)
\end{aligned}
$$

Because, $X_{1}, X_{2}, X_{3}, X_{4}$ are independent random variables

$$
\begin{aligned}
\therefore P(Y=y \cap Z=z) & =\sum_{x_{1} \in \operatorname{Range}\left(X_{1}\right)} P\left(X_{1}=x_{1}\right) P\left(X_{2}=y-x_{1}\right) \sum_{x_{3} \in \operatorname{Range}\left(X_{3}\right)} P\left(X_{3}=x_{3}\right) P\left(X_{4}=z-x_{3}\right) \\
& =P\left(Y=x_{1}+x_{2}\right) P\left(Z=x_{3}+x_{4}\right) \\
& =P(Y=y) P(Z=z)
\end{aligned}
$$

Hence, Y and Z are independent random variables. Now, the joint distribution of Y and Z is:

$$
\begin{aligned}
P(Y=y \cap Z=z) & =P(Y=y) P(Z=z) \\
& ={ }^{2} C_{y} p^{y}(1-p)^{2-y} \times{ }^{2} C_{z} p^{z}(1-p)^{2-z} \\
& ={ }^{2} C_{y}{ }^{2} C_{z} p^{y+z}(1-p)^{4-(y+z)}
\end{aligned}
$$

Y / Z	$Z=0$	$Z=1$	$Z=2$
$\mathrm{Y}=0$	$(1-p)^{4}$	$2 p(1-p)^{3}$	$p^{2}(1-p)^{2}$
$\mathrm{Y}=1$	$2 p(1-p)^{3}$	$4 p^{2}(1-p)^{2}$	$2 p^{3}(1-p)$
$\mathrm{Y}=2$	$p^{2}(1-p)^{2}$	$2 p^{3}(1-p)$	p^{4}

(b) Y and Z are independent if and only if
$P(Y=y \cap Z=z)=P(Y=y) P(Z=z) ; y \in \operatorname{Range}(Y)$ and $z \in \operatorname{Range}(Z)$
For $\mathrm{y}=0$ and $\mathrm{z}=0$:

$$
\begin{aligned}
P(Y=0) P(Z=0) & ={ }^{2} C_{0} p^{0}(1-p)^{2} \times{ }^{2} C_{0} p^{0}(1-p)^{2} \\
& =(1-p)^{4} \\
\therefore P(Y=0) P(Z=0) & =P(Y=0 \cap Z=0)
\end{aligned}
$$

Similarly, for other values of Y and Z , it can be shown that:
$P(Y=y \cap Z=z)=P(Y=y) P(Z=z)$.
(c) The theorem 3.3.6 states that:

Let $n>1$ be a positive integer. For each $j \in\{1,2, \ldots, n\}$ define a positive integer m_{j} and suppose $X_{i, j}$ is an array of mutually independent random variables for $j \in\{1,2, \ldots, n\}$ and $i \in\left\{1,2, \ldots, m_{j}\right\}$. Let f_{j} be functions such that the quantity

$$
Y_{j}=f_{j}\left(X_{1, j}, X_{2, j}, \ldots, X_{m, j}\right)
$$

is defined for the outputs of the $X_{i, j}$ variables. Then the resulting variables $Y_{1}, Y_{2}, \ldots Y_{n}$ are mutually independent.
Here,
$Y_{1}=Y=X_{1}+X_{2}$
$Y_{2}=Z=X_{3}+X_{4}$
$\therefore \mathrm{Y}$ and Z are independent random variables.
6. Exercise 3.3.15

Solution: 6
$\mathrm{X} \sim$ Geometric (p)
$\mathrm{Y} \sim$ Geometric (q)
X and Y are independent random variables. (given)
$\mathrm{Z}=\min (\mathrm{X}, \mathrm{Y})$

METHOD I:

(a) Let us define the events:
$\mathrm{A}=\{\mathrm{X}=\mathrm{n}$ and $\mathrm{Y}=\mathrm{n}\}$
$\mathrm{B}=\{\mathrm{X}=\mathrm{n}$ and $\mathrm{Y}>\mathrm{n}\}$
$\mathrm{C}=\{\mathrm{X}>\mathrm{n}$ and $\mathrm{Y}=\mathrm{n}\}$
Event $\{Z=n\}$ occurs if either A or B or C occurs.
Also, the events A, B and C disjoint events as:
$\{A \cap B\}=\phi \quad ; \quad\{A \cap C\}=\phi \quad ; \quad\{B \cap C\}=\phi$ and $\{A \cap B \cap C\}=\phi$
Therefore, the event $\{\mathrm{Z}=\mathrm{n}\}$ can be written as disjoint union:
$\{Z=n\}=\{X=n, Y=n\} \cup\{X=n, Y>n\} \cup\{X>n, Y=n\}$
(b) $P(Z=n)=P(X=n, Y=n)+P(X=n, Y>n)+P(X>n, Y=n)$

Because, disjoint union

Since, X and Y are independent random variables.

$$
\begin{aligned}
P(Z=n) & =P(X=n) P(Y=n)+P(X=n) P(Y>n)+P(X>n) P(Y=n) \\
& =\left(p(1-p)^{n-1}\right) \times\left(q(1-q)^{n-1}\right)+\left(p(1-p)^{n-1}\right) \times(1-q)^{n}+(1-p)^{n} \times\left(q(1-q)^{n-1}\right) \\
\therefore P(Z=n) & =[(1-p)(1-q)]^{n-1}(p q+p(1-q)+(1-p) q)
\end{aligned}
$$

(c)

$$
\begin{aligned}
P(Z=n) & =[(1-p)(1-q)]^{n-1}(p q+p(1-q)+(1-p) q) \\
& =[(1-p)(1-q)]^{n-1}[1-(1-p)(1-q)] \\
& =(1-r)^{n-1} r
\end{aligned}
$$

Therefore, $\mathrm{Z} \sim \operatorname{Geometric}(\mathrm{r})$ where, $\mathrm{r}=1$-(1-p)(1-q)

METHOD II:

$A_{j} \sim \operatorname{Bernoulli}(p) ; \mathrm{j}=1,2, \ldots$
$B_{k} \sim \operatorname{Bernoulli}(q) ; \mathrm{k}=1,2, \ldots$
Also, A_{j} and B_{k} variables collectively are mutually independent.
$\mathrm{X}=$ Number of first A_{j} that produces a result of 1
$\mathrm{Y}=$ Number of first B_{k} that produces a result of 1
(a)

$$
C_{j}= \begin{cases}1 & ; \text { if either } A_{j}=1 \text { or } B_{j}=1 \text { or both } \\ 0 & ; A_{j}=0=B_{j}\end{cases}
$$

Now,

$$
\begin{aligned}
P\left(C_{j}=1\right) & =P\left(A_{j}=1, B_{j}=0\right)+P\left(A_{j}=0, B_{j}=1\right)+P\left(A_{j}=1, B_{j}=1\right) \\
& =P\left(A_{j}=1\right) P\left(B_{j}=0\right)+P\left(A_{j}=0\right) P\left(B_{j}=1\right)+P\left(A_{j}=1\right) P\left(B_{j}=1\right) \\
& =p(1-q)+(1-p) q+p q \\
\therefore P\left(C_{j}=1\right) & =1-(1-p)(1-q)
\end{aligned}
$$

And,

$$
\begin{aligned}
P\left(C_{j}=0\right) & =P\left(A_{j}=0, B_{j}=0\right) \\
& =P\left(A_{j}=0\right) P\left(B_{j}=0\right) \\
\therefore P\left(C_{j}=0\right) & =(1-p)(1-q)
\end{aligned}
$$

Hence,

$$
P\left(C_{j}=c\right)= \begin{cases}1-(1-p)(1-q) & ; \text { for } C_{j}=1 \\ (1-p)(1-q) & ; \text { for } C_{j}=0\end{cases}
$$

Therefore, $C_{j} \sim \operatorname{Bernoulli}(r)$ where, $\mathrm{r}=1-(1-\mathrm{p})(1-\mathrm{q})$
(b) Since, A_{j} and B_{k} variables collectively are mutually independent and C_{j} depends on A_{j} and B_{j} only.
Hence, the sequence C_{1}, C_{2}, \ldots are mutually independent random variables.
(c) The random variable Z represents the number of first C_{j} that results in a 1.

The random variable $C_{j}=1$ if either $A_{j}=1$ or $B_{j}=1$ or both.
Also, $\mathrm{X}=$ Number of first A_{j} that produces a result of 1 , and $\mathrm{Y}=$ Number of first B_{k} that produces a result of 1 .
Hence, $\{Z=n\}=\{X=n, Y=n\} \cup\{X=n, Y>n\} \cup\{X>n, Y=n\}$
$\Longrightarrow \mathrm{Z}=\min \{\mathrm{X}, \mathrm{Y}\}$
(d) $P(Z=n)=P(X=n, Y=n)+P(X=n, Y>n)+P(X>n, Y=n)$

Because, disjoint union
Since, X and Y are independent random variables.

$$
\begin{aligned}
P(Z=n) & =P(X=n) P(Y=n)+P(X=n) P(Y>n)+P(X>n) P(Y=n) \\
& =\left(p(1-p)^{n-1}\right) \times\left(q(1-q)^{n-1}\right)+\left(p(1-p)^{n-1}\right) \times(1-q)^{n}+(1-p)^{n} \times\left(q(1-q)^{n-1}\right) \\
& =[(1-p)(1-q)]^{n-1}(p q+p(1-q)+(1-p) q) \\
& =[(1-p)(1-q)]^{n-1}(p q+p(1-q)+(1-p) q) \\
& =[(1-p)(1-q)]^{n-1}[1-(1-p)(1-q)] \\
\therefore P(Z=n) & =(1-r)^{n-1} r
\end{aligned}
$$

Therefore, $\mathrm{Z} \sim$ Geometric(r) where, $\mathrm{r}=1$-(1-p)(1-q)
7. Exercise 4.4.3

Solution: 7
Let X be the random variable representing the return on investment and let A, B, and C represent the events that the economy will be stronger, the same, and weaker in the next quarter, respectively.
We are given that:

```
E}(\textrm{X}|\textrm{A})=3 ; E(X|B)=1 ; E(X C C)=-
P}(\textrm{A})=0.1 ; P(B)=0.4 ; P(C)=
S.D(X|A)=3 ; S.D (X |B)=2 ; S.D(X C C)=3
```

Therefore,
$\mathrm{V}(\mathrm{X} \mid \mathrm{A})=9 \quad ; \mathrm{V}(\mathrm{X} \mid \mathrm{B})=4 \quad ; \mathrm{V}(\mathrm{X} \mid \mathrm{C})=9$
Now,

$$
\begin{gathered}
E(X)=E(X \mid A) P(A)+E(X \mid B) P(B)+E(X \mid C) P(C) \\
=(3 \times 0.1)+(1 \times 0.4)+((-1) \times 0.5) \\
\therefore E(X)=0.2 \\
V(X)=\left(V(X \mid A)+(E(X \mid A))^{2}\right) P(A)+\left(V(X \mid B)+(E(X \mid B))^{2}\right) P(B)+(V(X \mid C)+ \\
\left.(E(X \mid C))^{2}\right) P(C)-(E(X))^{2} \\
=\left(9+3^{2}\right) \times 0.1+\left(4+1^{2}\right) \times 0.4+\left(9+(-1)^{2}\right) \times 0.5-(0.2)^{2} \\
=1.8+2+5-0.04 \\
\therefore V(X)= \\
8.76
\end{gathered}
$$

8. Exercise 4.4.4

Solution: 8

Let A be the event that a standard light bulb is selected from the box and B be the event that a Super D-Lux light bulb is selected from the box.
$\mathrm{P}(\mathrm{A})=0.9 \quad ; \quad \mathrm{P}(\mathrm{B})=0.1$
Let, X be the random variable that represent the lifetime of a bulb.
$\mathrm{E}(\mathrm{X} \mid \mathrm{A})=4 \quad ; \quad \mathrm{S} . \mathrm{D}(\mathrm{X} \mid \mathrm{A})=1 \Longrightarrow \operatorname{Var}(\mathrm{X} \mid \mathrm{A})=1$
$\mathrm{E}(\mathrm{X} \mid \mathrm{B})=8 \quad ; \quad \mathrm{S} . \mathrm{D}(\mathrm{X} \mid \mathrm{B})=3 \Longrightarrow \operatorname{Var}(\mathrm{X} \mid \mathrm{B})=9$
Now,

$$
\begin{aligned}
& E(X)=E(X \mid A) P(A)+E(X \mid B) P(B) \\
&=(4 \times 0.9)+(8 \times 0.1) \\
& \therefore E(X)=4.4 \\
& V(X)=\left(V(X \mid A)+(E(X \mid A))^{2}\right) P(A)+\left(V(X \mid B)+(E(X \mid B))^{2}\right) P(B)-(E(X))^{2} \\
&=\left(1+4^{2}\right) \times 0.9+\left(9+8^{2}\right) \times 0.1-(4.4)^{2} \\
&= 15.3+7.3-19.36 \\
& \therefore V(X)= 3.24
\end{aligned}
$$

Hence,

$$
\begin{aligned}
S . D(X) & =\sqrt{\operatorname{Var}(X)} \\
& =\sqrt{3.24} \\
\therefore S . D(X) & =1.8
\end{aligned}
$$

