Ishaan Taneja

Grading:

30 marks- Complete submission of Problem 2,4,6
70 marks- Problem 6

From Probability and Statistics with Examples Using R

1. Exercise 1.4.6

Solution: 1
$\mathrm{A}=\{$ The ball is either black or green $\}$

$$
\begin{aligned}
P(A) & =P(\text { The ball is either black or green }) \\
& =P(\text { Black ball } \cup \text { Green ball }) \\
& =P(\text { Black ball })+P(\text { Green ball }) \quad \text { (because, mutually exclusive events }) \\
& =\frac{1}{27}+\frac{8}{27} \\
& =\frac{9}{27} \\
& =\frac{1}{3}
\end{aligned}
$$

$\mathrm{B}=\{$ The ball is either black or red $\}$

$$
\begin{aligned}
P(B) & =P(\text { The ball is either black or red }) \\
& =P(\text { Black ball } \cup \text { red ball }) \\
& =P(\text { Black ball })+P(\text { red ball }) \quad \text { (because, mutually exclusive events }) \\
& =\frac{1}{27}+\frac{8}{27} \\
& =\frac{9}{27} \\
& =\frac{1}{3}
\end{aligned}
$$

$\mathrm{C}=\{$ The ball is either black or blue $\}$

$$
\begin{aligned}
P(C) & =P(\text { The ball is either black or blue }) \\
& =P(\text { Black ball } \cup \text { Green ball }) \\
& =P(\text { Black ball })+P(\text { blue ball } \quad \text { (because, mutually exclusive events) } \\
& =\frac{1}{27}+\frac{8}{27} \\
& =\frac{9}{27} \\
& =\frac{1}{3}
\end{aligned}
$$

(a). Now,

$$
\begin{aligned}
P(A \cap B \cap C) & =P(\text { Black ball }) \\
& =\frac{1}{27}
\end{aligned}
$$

(b).

$$
\begin{aligned}
P(A) P(B) P(C) & =\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \\
& =\frac{1}{27}
\end{aligned}
$$

(c). From (a) and (b), we know that:
$P(A \cap B \cap C)=P(A) P(B) P(C)$
But,

$$
\begin{aligned}
P(A \cap B) & =P(\text { Black ball }) \\
& =\frac{1}{27} \\
& \neq P(A)(B)=\frac{1}{9}
\end{aligned}
$$

Similarly,
$P(A \cap C) \neq P(A) P(C)$
And, $P(B \cap C) \neq P(B) P(C)$
Hence, A, B and C are not mutually independent events
2. Exercise 1.4.7

Solution: 2
$A_{1}=\{$ The student is female $\}$

$$
\begin{aligned}
P\left(A_{1}\right) & =\frac{90}{150} \\
& =\frac{3}{5}
\end{aligned}
$$

$A_{2}=\{$ The student uses a pencil $\}$

$$
\begin{aligned}
P\left(A_{2}\right) & =\frac{60}{150} \\
& =\frac{2}{5}
\end{aligned}
$$

$A_{3}=\{$ The student is wearing eye glasses $\}$

$$
\begin{aligned}
P\left(A_{3}\right) & =\frac{30}{150} \\
& =\frac{1}{5}
\end{aligned}
$$

(a). If $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$ then,

$$
P\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{3}{5} \times \frac{2}{5} \times \frac{1}{5}
$$

$$
=\frac{6}{125}
$$

Hence, cardinality of set $\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{6}{125} \times 150=7.2$.
which is not possible, as cardinality of a set can only be non-negative integers. Therefore, it is impossible for these events to be mutually independent.
(b). For pairwise independence of events A_{1}, A_{2} and A_{3} :
i).

$$
\begin{aligned}
P\left(A_{1} \cap A_{2}\right) & =P\left(A_{1}\right) P\left(A_{2}\right) \\
& =\frac{3}{5} \times \frac{2}{5} \\
& =\frac{6}{25}
\end{aligned}
$$

Hence, cardinality of set $\left(A_{1} \cap A_{2}\right)=\frac{6}{25} \times 150=36$.
which is possible, as cardinality of a set can only be non-negative integers.
ii).

$$
\begin{aligned}
P\left(A_{1} \cap A_{3}\right) & =P\left(A_{1}\right) P\left(A_{3}\right) \\
& =\frac{3}{5} \times \frac{1}{5} \\
& =\frac{3}{25}
\end{aligned}
$$

Hence, cardinality of set $\left(A_{1} \cap A_{3}\right)=\frac{3}{25} \times 150=24$.
which is possible, as cardinality of a set can only be non-negative integers.
iii).

$$
\begin{aligned}
P\left(A_{2} \cap A_{3}\right) & =P\left(A_{2}\right) P\left(A_{3}\right) \\
& =\frac{2}{5} \times \frac{1}{5} \\
& =\frac{2}{25}
\end{aligned}
$$

Hence, cardinality of set $\left(A_{2} \cap A_{3}\right)=\frac{2}{25} \times 150=16$.
which is possible, as cardinality of a set can only be non-negative integers.

Hence, it is possible for these events to be pairwise independent, if we take the values obtained above as an example.
3. Exercise 3.3.3

Solution: 3
Let $\mathrm{X} \sim \operatorname{Bernoulli}(\mathrm{p})$ and $\mathrm{Y} \sim \operatorname{Bernoulli}(\mathrm{q})$ be independent.
Range $(\mathrm{X})=\{0,1\}$
Range $(\mathrm{Y})=\{0,1\}$
(a). Let, $Z=X Y$

Range $(Z)=\{0,1\}$
Now, for $\mathrm{Z}=0$,

$$
\begin{aligned}
P(Z=0) & =P(X Y=0) \\
& =P(X=0, Y=0)+P(X=1, Y=0)+P(X=0, Y=1)
\end{aligned}
$$

Since, X and Y are independent Bernoulli random variables

$$
\begin{aligned}
& =P(X=0) P(Y=0)+P(X=1) P(Y=0)+P(X=0) P(Y=1) \\
& =(1-p)(1-q)+p(1-q)+(1-p) q \\
\therefore P(Z=0) & =1-p q
\end{aligned}
$$

For $\mathrm{Z}=1$,

$$
\begin{aligned}
P(Z=1) & =P(X Y=1) \\
& =P(X=1, Y=1)
\end{aligned}
$$

Since, X and Y are independent Bernoulli random variables

$$
\begin{aligned}
& =P(X=1) P(Y=1) \\
& =p q \\
\therefore P(Z=1) & =p q
\end{aligned}
$$

In general, $P(Z=z)=(p q)^{z}(1-p q)^{1-z} ; \mathrm{z}=0,1$
Hence, $\mathrm{Z}=\mathrm{XY}$ is a also a Bernoulli random variable with parameter 'pq'.
(b). Let, $Z=1-X$

Range $(Z)=\{0,1\}$
Now, for $\mathrm{Z}=0$,

$$
\begin{aligned}
P(Z=0) & =P(1-X=0) \\
& =P(X=1) \\
& =p \\
\therefore P(Z=0) & =p
\end{aligned}
$$

For $\mathrm{Z}=1$,

$$
\begin{aligned}
P(Z=1) & =P(1-X=1) \\
& =P(X=0) \\
& =(1-p) \\
\therefore P(Z=1) & =(1-p)
\end{aligned}
$$

In general, $P(Z=z)=(1-p)^{z}(p)^{1-z} ; \mathrm{z}=0,1$
Hence, $Z=1-X$ is a also a Bernoulli random variable with parameter '(1-p)'.
(c). Let, $Z=X+Y-X Y$

Range $(Z)=\{0,1\}$
Now, for $\mathrm{Z}=0$,

$$
\begin{aligned}
P(Z=0) & =P(X+Y-X Y=0) \\
& =P(X=0, Y=0)
\end{aligned}
$$

Since, X and Y are independent Bernoulli random variables

$$
\begin{aligned}
& =P(X=0) P(Y=0) \\
\therefore P(Z=0) & =(1-p)(1-q)
\end{aligned}
$$

For $\mathrm{Z}=1$,

$$
\begin{aligned}
P(Z=1) & =P(X+Y-X Y=1) \\
& =P(X=0, Y=1)+P(X=1, Y=0)+P(X=1, Y=1)
\end{aligned}
$$

Since, X and Y are independent Bernoulli random variables

$$
\begin{aligned}
& =P(X=0) P(Y=1)+P(X=1) P(Y=0)+P(X=1) P(Y=1) \\
& =(1-p) q+p(1-q)+p q \\
\therefore P(Z=1) & =1-(1-p)(1-q)
\end{aligned}
$$

In general, $P(Z=z)=[1-(1-p)(1-q)]^{z}[(1-p)(1-q)]^{1-z} ; \mathrm{z}=0,1$
Hence, $Z=X+Y-X Y$ is a also a Bernoulli random variable with parameter ' $[1-(1-p)(1-q)]$ '.
4. Exercise 3.3.6

Solution: 4
Let, X and Y be the random variable representing the number of heads and number of tails in one flip of a single fair coin respectively.
(a) Range $(X)=\{0,1\}$

Range $(\mathrm{Y})=\{0,1\}$
Since, it is a fair coin
$\Longrightarrow P($ Head $)=P(X=1)=\frac{1}{2}=P(Y=0)$
And,
$P($ Tail $)=P(X=0)=\frac{1}{2}=P(Y=1)$
$\therefore \mathrm{X}, \mathrm{Y} \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$
(b) $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$

Range $(Z)=\{1\}$
Because, If we flip a fair coin, we will get either head or a tail but not both at the same time.
So, there won't be any case when both the random variables X and Y will simultaneously takes the value 0 or 1 .
Only possible cases are:

1) $X=0, Y=1 \Longrightarrow Z=1$
2) $\mathrm{X}=1, \mathrm{Y}=0 \Longrightarrow \mathrm{Z}=1$

Therefore, $\mathrm{Z}=1$ is a sure event.
Hence, $\mathrm{P}(\mathrm{Z}=1)=1$.
(c) This result doesn't conflict with the conclusion of Example 3.3.3 because, in this case, even though the $\mathrm{X}, \mathrm{Y} \sim \operatorname{Bernoulli}(\mathrm{p})$ but they are not independent random variables. While in Example 3.3.3, the $\mathrm{X}, \mathrm{Y} \sim \operatorname{Bernoulli}(\mathrm{p})$ and are independent random variables.
5. Exercise 3.3.7

Solution: 5
Let $\mathrm{X} \sim \operatorname{Geometric}(\mathrm{p})$ and $\mathrm{Y} \sim \operatorname{Geometric}(\mathrm{p})$ be independent.
$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
(a) Range $(\mathrm{X})=\{1,2,3, \ldots\}$

Range $(\mathrm{Y})=\{1,2,3, \ldots\}$
\Longrightarrow Range $(\mathrm{Z})=\{2,3,4, \ldots\}$
(b)

$$
\begin{aligned}
P(Z=n) & =P(X+Y=n) \\
& =P\left(\cup_{i=1}^{n-1}(X=i, Y=n-i)\right) \\
& =\sum_{i=1}^{n-1} P(X=i, Y=n-i) \quad \text { (Mutually exclusive events) } \\
& =\sum_{i=1}^{n-1} P(X=i) P(Y=n-i) \quad(\mathrm{X} \text { and } \mathrm{Y} \text { are independent random variables) } \\
& =\sum_{i=1}^{n-1} p(1-p)^{i-1} \times p(1-p)^{n-i-1} \\
& =\sum_{i=1}^{n-1} p^{2}(1-p)^{n-2} \\
& =p^{2}(1-p)^{n-2} \sum_{i=1}^{n-1} 1 \\
\therefore P(Z=n) & =(n-1) p^{2}(1-p)^{n-2} ; n=2,3,4, \ldots
\end{aligned}
$$

(c) For $\mathrm{n}=2$,
$P(Z=2)=(2-1) p^{2}(1-p)^{2-2}$
$\therefore P(Z=2)=p^{2}$
For $\mathrm{n}=3$,
$P(Z=3)=(3-1) p^{2}(1-p)^{3-2}$
$\therefore P(Z=3)=2 p^{2}(1-p)$
Now, we have to obtain the value of ' p ' such that:

$$
\begin{aligned}
& P(Z=3)>P(Z=2) \\
& 2 p^{2}(1-p)>p^{2} \\
& p^{2}(2-2 p-1)>0 \\
& \text { Since, } p^{2}>0 \\
& \Longrightarrow 2-2 p-1>0 \\
& \therefore p<\frac{1}{2}
\end{aligned}
$$

Hence, for all $p<0.5$, the $\mathrm{P}(\mathrm{Z}=3)$ is larger than $\mathrm{P}(\mathrm{Z}=2)$.
6. Exercise 4.4.1

Solution: 6
X \sim Geometric (p)
Event $\mathrm{A}=\{X \leq 3\}$
Range $(\mathrm{X})=\{1,2,3, \ldots\}$
$P(X=x \mid A)=\frac{P(X=x \cap A)}{P(A)}$
If $x>3$ then,
$P(X=x \cap A)=0$
Therefore, $P(X=x \mid A)=0 \quad ; \mathrm{x}=4,5,6, \ldots$

If $x \leq 3$ then,

$$
\begin{aligned}
P(X=x \mid A) & =\frac{P(X=x)}{P(X \leq 3)} \\
& =\frac{\left.p^{(} 1-p\right)^{x-1}}{\sum_{x=1}^{3} p^{(1-p)^{x-1}}} \\
& =\frac{\left.p^{(} 1-p\right)^{x-1}}{p\left(p^{2}-3 p+3\right)} \\
\therefore P(X=x \mid A) & =\frac{(1-p)^{x-1}}{p^{2}-3 p+3} ; x=1,2,3
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \qquad P(X=x \mid A)=\left\{\begin{array}{cl}
\frac{(1-p)^{x-1}}{p^{2}-3 p+3} & ; \text { for } \mathrm{x}=1,2,3 \\
0 & ; \text { for } \mathrm{x}=4,5,6, \ldots
\end{array}\right. \\
& E(X \mid A)=\sum_{x=1}^{\infty} x P(X=x \mid A) \\
& =1 \times\left(\frac{1}{p^{2}-3 p+3}\right)+2 \times\left(\frac{1-p}{p^{2}-3 p+3}\right)+3 \times\left(\frac{(1-p)^{2}}{p^{2}-3 p+3}\right)+0 \\
& =\frac{1+(2-2 p)+\left(3-6 p+3 p^{2}\right)}{p^{2}-3 p+3} \\
& \therefore E(X \mid A)=\frac{3 p^{2}-8 p+6}{p^{2}-3 p+3}
\end{aligned}
$$

Now,

$$
\begin{aligned}
E\left(X^{2} \mid A\right) & =\sum_{x=1}^{\infty} x^{2} P(X=x \mid A) \\
& =1^{2} \times\left(\frac{1}{p^{2}-3 p+3}\right)+2^{2} \times\left(\frac{1-p}{p^{2}-3 p+3}\right)+3^{2} \times\left(\frac{(1-p)^{2}}{p^{2}-3 p+3}\right) \\
& =\frac{\left.1+(4-4 p)+9-18 p+9 p^{2}\right)}{p^{2}-3 p+3} \\
\therefore E\left(X^{2} \mid A\right) & =\frac{9 p^{2}-22 p+14}{p^{2}-3 p+3}
\end{aligned}
$$

We know that,

$$
\begin{aligned}
\operatorname{Var}(X \mid A) & =E\left(X^{2} \mid A\right)-(E(X \mid A))^{2} \\
\therefore \operatorname{Var}(X \mid A) & =\frac{9 p^{2}-22 p+14}{p^{2}-3 p+3}-\left(\frac{3 p^{2}-8 p+6}{p^{2}-3 p+3}\right)^{2}
\end{aligned}
$$

7. Exercise 4.5.2

Solution: 7
$\mathrm{X} \sim \operatorname{Uniform}(\{0,1,2\})$
$\mathrm{Y}=$ Number of heads in X flips of a coin.
(a) We should expect X and Y to be positively correlated because if we increase the number of flips, the chances of getting more heads also increases.
In other words, If we increase the value of X , the value of Y should also increase i.e. positively correlated.
(b) Range $(\mathrm{X})=\{0,1,2\}$

Range $(\mathrm{Y})=\{0,1,2\}$

$$
\begin{aligned}
P(X=0, Y=0) & =P(Y=0 \mid X=0) P(X=0) \\
& =1 \times \frac{1}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

Since, it is impossible to get either 1 or 2 heads in 0 flips of a coin.
Therefore, $P(X=0, Y=1)=0=P(X=0, Y=2)$

$$
\begin{aligned}
P(X=1, Y=0) & =P(Y=0 \mid X=1) P(X=1) \\
& =\frac{1}{2} \times \frac{1}{3} \\
& =\frac{1}{6} \\
P(X=1, Y=1) & =P(Y=1 \mid X=1) P(X=1) \\
& =\frac{1}{2} \times \frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

Again, it is impossible to get 2 heads in 1 flip of a coin.
Therefore, $P(X=1, Y=2)=0$

$$
\begin{aligned}
P(X=2, Y=0) & =P(Y=0 \mid X=2) P(X=2) \\
& =\frac{1}{4} \times \frac{1}{3} \\
& =\frac{1}{12} \\
P(X=2, Y=1) & =P(Y=1 \mid X=2) P(X=2) \\
& =\frac{2}{4} \times \frac{1}{3} \\
& =\frac{2}{12}
\end{aligned}
$$

$$
\begin{aligned}
P(X=2, Y=2) & =P(Y=2 \mid X=2) P(X=2) \\
& =\frac{1}{4} \times \frac{1}{3} \\
& =\frac{1}{12}
\end{aligned}
$$

Therefore,

Y / X	$X=0$	$X=1$	$X=2$	$P(Y=y)$
$\mathrm{Y}=0$	$1 / 3$	$1 / 6$	$1 / 12$	$7 / 12$
$\mathrm{Y}=1$	0	$1 / 6$	$2 / 12$	$4 / 12$
$\mathrm{Y}=2$	0	0	$1 / 12$	$1 / 12$
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	$1 / 3$	$1 / 3$	$1 / 3$	

$$
\begin{aligned}
E(X) & =\sum_{x=0}^{2} x P(X=x) \\
& =0 \times \frac{1}{3}+1 \times \frac{1}{3}+2 \times \frac{1}{3} \\
\therefore E(X) & =1 \\
E(Y)= & \sum_{y=0}^{2} y P(Y=y) \\
= & 0 \times \frac{7}{12}+1 \times \frac{4}{12}+2 \times \frac{1}{12} \\
\therefore E(Y) & =\frac{1}{2}
\end{aligned}
$$

Let, $\mathrm{Z}=\mathrm{XY}$
Range $(Z)=\{0,1,2,4\}$
Now,

$$
\begin{aligned}
P(Z=0) & =P(X=0, Y=0)+P(X=0, Y=1)+P(X=0, Y=2) \\
& +P(X=1, Y=0)+P(X=2, Y=0) \\
& =\frac{1}{3}+0+0+\frac{1}{6}+\frac{1}{12} \\
& =\frac{7}{12}
\end{aligned}
$$

Also,

$$
\begin{aligned}
P(Z=1) & =P(X=1, Y=1) \\
& =\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
P(Z=2) & =P(X=1, Y=2)+P(X=2, Y=1) \\
& =0+\frac{2}{12}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{6} \\
& \begin{aligned}
P(Z=4) & =P(X=2, Y=2) \\
& =\frac{1}{12}
\end{aligned}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E(Z) & =E(X Y) \\
& =\sum_{z \in \operatorname{Range}(Z)} z P(Z=z) \\
& =0 \times \frac{7}{12}+1 \times \frac{1}{6}+2 \times \frac{1}{6}+4 \times \frac{1}{12} \\
& =\frac{5}{6}
\end{aligned}
$$

We know that,

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =\frac{5}{6}-1 \times\left(\frac{1}{2}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

Since, $\operatorname{Cov}(X, Y)>0$
Therefore, it confirms our answer to (a).

