Ishaan Taneja

## Grading:

30 marks- Complete submission of Problem 2,5
70 marks- Problem 2

1. From the graph $G\left(10, \frac{x}{6}\right)$ or from $A$ that you constructed in the worksheet:
(a) fill in the following table from the data in worksheet:

| x | \# Edges |
| :--- | :--- |
|  |  |

(b) Let $E$ denote the number of edges in a realisation of $G\left(10, \frac{x}{6}\right)$. Find the likelihood $L(x ; E)$ that $E$ edges occur in the random Graph $G\left(10, \frac{x}{6}\right)$.
(c) Find $x^{*}$ that maximizes $L(x ; E)$ with respect to $x$. You may assume $x \in[1,5]$.
(d) Substitute your value of $E$ from Question 1, into the expression for $x^{*}$. Is the resulting $x^{*}$ close to your chosen $x$ ?

Solution: 1
(a) The data from worksheet:

| x | \# Edges |
| :---: | :---: |
| 3 | 21 |

(b) $G(10, x / 6)$ has 10 vertices $(n=10)$.

So the possible number of edges is ${ }^{10} C_{2}=45$.
$\mathrm{E}=$ Number of edges in a realisation of $G(10, x / 6)$
i.e. E is the event of occurrence of edges among the 45 possible edges.

Probability of success of each edge $=x / 6$
$\therefore E \sim \operatorname{Binomial}(45, x / 6)$
The p.m.f of $E$ is given by:

$$
f_{x}(E)=\binom{45}{E}\left(\frac{x}{6}\right)^{E}\left(1-\frac{x}{6}\right)^{45-E} .
$$

(c) Since we are only interested in the argument that maximizes $f_{x}(E)$, we will first take $\log$, and then maximize.

$$
\begin{aligned}
& \log f_{x}(E)=\log \left[\binom{45}{E}\right]+E \log \frac{x}{6}+(45-E) \log \left(1-\frac{x}{6}\right) \\
\Rightarrow & \frac{d \log f_{x}(E)}{d x}=E \frac{1}{\frac{x}{6}} \cdot \frac{1}{6}+(45-E) \frac{1}{1-\frac{x}{6}}\left(-\frac{1}{6}\right) \stackrel{\text { set }}{=} 0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow E \frac{1}{\frac{x^{*}}{6}}=(45-E) \frac{1}{1-\frac{x^{*}}{6}} \\
& \Rightarrow \frac{1-\frac{x^{*}}{6}}{\frac{x}{6}}=\frac{45}{E}-1 \\
& \Rightarrow \frac{1}{\frac{x^{*}}{6}}=\frac{45}{E} \\
& \Rightarrow x^{*}=6 \times \frac{E}{45}
\end{aligned}
$$

Also, $\frac{d^{2} \log f_{x}(E)}{d x^{2}}<0 \quad$; for $x=x^{*}$.
Thus, $x^{*}$ is the point of maxima for $f_{x}(E)$.
(d) $E=21$
$\Rightarrow x^{*}=6 \times \frac{21}{45}=2.8 \approx 3$
Hence, for our chosen $x(=3)$ is very close to 2.8 .
2. Example 9.2.1.

Solution: 2
$X_{1}, X_{2}, \ldots, X_{10}$ are i.i.d $\operatorname{Binomial}(\mathrm{N}, \mathrm{p})$
Number of unknown parameters $=2$
Empirical realisation $=8,7,6,11,8,5,3,7,6,9$

$$
\begin{aligned}
\mu_{1}\left(X_{1}, X_{2}, \ldots, X_{10}\right) & =\frac{1}{10} \sum_{i=1}^{10} X_{i} \\
& =\frac{1}{10}(8+7+6+11+8+5+3+7+6+9) \\
& =7 \\
\mu_{2}\left(X_{1}, X_{2}, \ldots, X_{10}\right) & =\frac{1}{10} \sum_{i=1}^{10} X_{i}^{2} \\
& =\frac{1}{10}\left(8^{2}+7^{2}+6^{2}+11^{2}+8^{2}+5^{2}+3^{2}+7^{2}+6^{2}+9^{2}\right) \\
& =53.4
\end{aligned}
$$

And, $m_{1}=E(X)=N p$
$m_{2}=E\left(X^{2}\right)=N p(1-p)+(N p)^{2}$
By method of moments:
$\mu_{1}\left(X_{1}, X_{2}, \ldots, X_{10}\right)=m_{1} \Rightarrow N p=7$-(1)
And, $\mu_{2}\left(X_{1}, X_{2}, \ldots, X_{10}\right)=m_{2} \Rightarrow N p(1-p)+(N p)^{2}=53.4$
Substituting (1) in (2); we get:

$$
\begin{aligned}
N p(1-p)+(N p)^{2} & =53.4 \\
7(1-p)+49 & =53.4
\end{aligned}
$$

$$
\begin{aligned}
& \quad 7-7 p=4.4 \\
& \therefore p=0.371
\end{aligned}
$$

Putting value of $p$ in (1); we get:
$N=\frac{7}{0.371}=18.87 \approx 19$
Thus, the method of moments estimates that the distribution from which the sample came is $\operatorname{Binomial}(19,0.371)$.
3. Example 9.2.2.

Solution: 3
$X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d $\operatorname{Normal}(\mu, \sigma)$
$\mu_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
$\mu_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$
And, $m_{1}=E(X)=\mu$
$m_{2}=E\left(X^{2}\right)=\operatorname{Var}(X)+(E(X))^{2}=\sigma^{2}+\mu^{2}$
By method of moments:
$\mu_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=m_{1} \Rightarrow \mu=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
And, $\mu_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=m_{2} \Rightarrow \sigma^{2}+\mu^{2}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$
Substituting (1) in (2); we get:

$$
\begin{aligned}
\sigma^{2}+\mu^{2} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \\
\sigma^{2} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2} \\
\sigma^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
\sigma^{2} & =\frac{n-1}{n} S^{2} \quad ; \text { where, } S^{2}=\text { Sample variance } \\
\therefore \sigma & =\sqrt{\frac{n-1}{n}} S
\end{aligned}
$$

Thus, the method of moment estimators for $\mu$ and $\sigma$ is $\bar{X}$ and $\sqrt{\frac{n-1}{n}} S$ respectively.
4. Example 9.3.2.

Solution: 4
$X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d $\operatorname{Normal}(p, 1)$
$f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-p)^{2}}{2}}$
The likelihood function is given by:

$$
\begin{aligned}
L\left(p ; X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\left(X_{i}-p\right)^{2}}{2}} \\
& =\frac{1}{(\sqrt{2 \pi})^{n}} e^{-\frac{\sum_{i=1}^{n}\left(X_{i}-p\right)^{2}}{2}}
\end{aligned}
$$

To find MLE, treating the given realisation $X_{1}, X_{2}, \ldots, X_{n}$ as fixed, we needs to maximise L as a function of $p$.
This is equivalent to finding the minimum of $g: R \rightarrow R$ given by

$$
g(p)=\sum_{i=1}^{n}\left(X_{i}-p\right)^{2}
$$

Now,

$$
\begin{aligned}
g^{\prime}(p) & =-2 \sum_{i=1}^{n}\left(X_{i}-p\right) \stackrel{\text { set }}{=} 0 \\
n \hat{p} & =\sum_{i=1}^{n} X_{i} \\
\therefore \hat{p} & =\bar{X}
\end{aligned}
$$

Also, $g^{\prime \prime}(p)>0$ for $p=\hat{p}$
Hence, the MLE of p is given by $\hat{p}=\bar{X}$
5. Example 9.3.3.

Solution: 5
$X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d $\operatorname{Bernoulli}(p)$

$$
f(x \mid p)= \begin{cases}p^{x}(1-p)^{1-x} & ; \text { if } x \in 0,1 \\ 0 & ; \text { otherwise }\end{cases}
$$

The likelihood function is given by

$$
\begin{aligned}
L\left(p ; X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} p^{X_{i}}(1-p)^{1-X_{i}} \\
& =p^{\sum_{i=1}^{n} X_{i}}(1-p)^{n-\sum_{i=1}^{n} X_{i}}
\end{aligned}
$$

To find the MLE, treating the given realisation as fixed, we need to maximize L as a function of $p$.
The log likelihood function is:

$$
\begin{aligned}
T\left(p ; X_{1}, \ldots, X_{n}\right)=\ln L\left(p ; X_{1}, \ldots, X_{n}\right) \\
T\left(p ; X_{1}, \ldots, X_{n}\right)= \begin{cases}\ln \left(\frac{p}{1-p}\right) a+n \ln (1-p) & ; \text { if } \sum_{i=1}^{n} X_{i}=a, 0<a<n \\
n \ln (1-p) & ; \text { if } \sum_{i=1}^{n} X_{i}=0 \\
n \ln p & ; \text { if } \sum_{i=1}^{n} X_{i}=n\end{cases}
\end{aligned}
$$

Case 1: If $0<\sum_{i=1}^{n} X_{i}<n$

$$
\begin{gathered}
\frac{d T\left(p ; X_{1}, \ldots, X_{n}\right)}{d p}=\frac{1}{p(1-p)} \sum_{i=1}^{n} X_{i}-\frac{n}{1-p} \stackrel{\text { set }}{=} 0 \\
\frac{1}{\hat{p}(1-\hat{p})} \sum_{i=1}^{n} X_{i}=\frac{n}{1-\hat{p}} \\
\frac{1}{\hat{p}} \sum_{i=1}^{n} X_{i}=n \\
\therefore \hat{p}=\frac{\sum_{i=1}^{n} X_{i}}{n}
\end{gathered}
$$

Case 2: If $\sum_{i=1}^{n} X_{i}=0$
In this case, $T$ is a decreasing function of $p$ and maximum occurs at $p=0$.
Case 3: If $\sum_{i=1}^{n} X_{i}=n$
In this case, $T$ is an increasing function of $p$ and maximum occurs at $p=1$.
Therefore, we can conclude that $\hat{p}=\frac{\sum_{i=1}^{n} X_{i}}{n}$.
6. Example 9.4.2.

Solution: 6
$X_{1}, X_{2}, \ldots, X_{16}$ are i.i.d $X$
Sample mean ; $\bar{X}=10.2$
Sample standard deviation ; $S=3.0$
In this case, the confidence level $; \beta=0.95$.
So we must find the value of $a$ for:

$$
\begin{align*}
P(|\bar{X}-\mu|<a) & =0.95 \\
P\left(\frac{|\bar{X}-\mu|}{S / \sqrt{n}}<\frac{a}{S / \sqrt{n}}\right) & =0.95 \\
P\left(|T|<\frac{4 a}{3}\right) & =0.95 \\
P\left(-\frac{4 a}{3}<T<\frac{4 a}{3}\right) & =0.95 \tag{1}
\end{align*}
$$

Also, we know that for t-distribution:

$$
\begin{equation*}
P(-2.13<T<2.13)=0.95 \tag{2}
\end{equation*}
$$

On comparing (1) and (2), we get:

$$
\begin{aligned}
\frac{4 a}{3} & =2.13 \\
\therefore a & \approx 1.60
\end{aligned}
$$

Hence, $95 \%$ confidence interval for the actual mean of the distribution $X$ is $(8.6,11.8)$.

