Prashant Sharma

Grading:

20 marks- Complete submission of worksheet10
40 marks- Problem 4 and 40 marks- Problem 5

Problem:1

```
> #we have to choose x
> set.seed(5)
> x = sample(1:5,1,prob = c(1/5,1/5,1/5,1/5,1/5))
> x
```

[1] 3

Problem:2

By considering the experiment of rolling a die and an event from this experiment which occurs with probability $\mathrm{x} / 6=3 / 6=1 / 2$ can be as

Getting an even number on roll of a die.

Problem:3

The number of edges in a graph with 10 vertices having no self-loops is $\binom{10}{2}=45$

Problem: 4
> Adj_matrix=read.csv("C:
Users
shiva
Desktop
Bayesian Inference
Adjacency matrix.csv", header=FALS
> Adj_matrix1=data.matrix(Adj_matrix)
> Adj_matrix1

	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10
$[1]$,	0	1	0	1	1	1	1	0	1	0
$[2]$,	1	0	0	0	0	1	0	1	0	0
$[3]$,	0	0	0	0	1	0	1	0	0	1
$[4]$,	1	0	0	0	0	1	0	0	0	1

$[5]$,	1	0	1	0	0	0	0	1	0	1
$[6]$,	1	1	0	1	0	0	0	0	1	0
$[7]$,	1	0	1	0	0	0	0	1	0	1
$[8]$,	0	1	0	0	1	0	1	0	1	1
$[9]$,	1	0	0	0	0	1	0	1	0	0
$[10]$,	0	0	1	1	1	0	1	1	0	0

Problem:5
> library(igraph)
> ig = graph_from_adjacency_matrix(Adj_matrix1, mode="upper")
> plot(ig)


```
> #finding the number of edges for graph
> x1=sum(colSums(Adj_matrix1)/2)
> x1
```

[1] 20

As

$$
a_{i j} \sim \operatorname{Bernoulli}(p)
$$

; where p denotes the probability of occurrence of event B.
Likelihood will be:

$$
L=p^{x_{1}}(1-p)^{n-x_{1}}
$$

where, $n=45$ and $x_{1}=\sum_{i=1}^{45} x_{i}$ Now,

$$
\log L=x_{1} \log p+\left(n-x_{1}\right) \log (1-p)
$$

$$
\begin{gathered}
\frac{\partial \log L}{\partial p}=\frac{x_{1}}{p}-\frac{n-x_{1}}{(1-p)}=0 \\
\frac{20}{p}-\frac{45-20}{(1-p)}=0 \\
20(1-p)-25 p=0 \\
20-20 p-25 p=0 \\
45 p=20 \\
\hat{p}=\frac{20}{45}=0.44
\end{gathered}
$$

which is MLE of p.

