For numerical answers with decimal digits please read instructions.

1. Let X, Y be two discrete random variables taking values $\{-1, 1\}$. Suppose their joint distribution is given by the table

	X=-1	X=1
Y=-1	0.3	0.2
Y=1	0.3	0.2

- (a) Cov(X,Y) is _____.
- (b) Are X and Y independent?
- 2. Let X and Y be discrete random variables with Range $(X) = \{0, 1, 2\}$ and Range $(Y) = \{1, 2\}$ with joint distribution given by the chart below.

	X = 0	X = 1	X=2
Y=1	0.1	0.2	0.1
Y=2	0.3	0.2	0.1

(a) $\mathbb{E}[XY]$ is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(b) $Cov(X, Y) := \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$ is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

- 3. Let $X \sim \text{Geometric}(\frac{1}{2})$ and consider the event $A = \{X \leq 3\}$.
 - (a) $\mathbb{E}[X|A]$ is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(b) Var[X|A] is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

4. Let X and Y be described by the joint distribution

	X = -1	X = 0	X = 1
Y = -1	1/15	2/15	2/15
Y = 0	2/15	1/15	2/15
Y=1	2/15	2/15	1/15

and answer the following questions.

(a) $\mathbb{E}[X|Y=-1]$ is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(b) $\operatorname{Var}[X|Y = -1]$ is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

- 5. A fair die is rolled.
 - (a) The expected value given that the roll was even is _____.
 - (b) The variance of the value given the roll was even is $\frac{(i)}{(ii)}$.

 The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- 6. Let $Y \sim \text{Uniform}(\{1, 2, ..., 15\})$ and let X be the number of heads on Y flips of a fair coin. The expected value of X is _____.
- 7. Let X be a discrete random variable. Using Chebyshev's inequality the upper bound on the likelihood that X will be more than two standard deviations from its expected value is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

8. Let $X \sim \text{Uniform}(\{-2, -1, 0, 1, 2\})$, and let $f(x) = x^2$. Then $\mathbb{E}[f(X)]$ is _____.