For numerical answers with decimal digits please read instructions.

- 1. A pair of fair dice are thrown. Let X represent the larger of the two values on the dice and let Y represent the smaller of the two values.
 - (a) The domain of X and Y, say S, is given by
 - i. $S = \{(i, j) : i, j \in \mathbb{N} \text{ and } 1 \le i, j \le 6\}.$
 - ii. $S = \{i : i \in \mathbb{N} \text{ and } 1 \le i \le 6\}.$
 - iii. $S = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}.$
 - (b) The number of elements in S is _____
 - (c) The Range of X, R_X , is given by
 - i. $R_X = \{1, 2, 3, 4, 5, 6\}.$
 - ii. $R_X = \{6\}.$
 - iii. $R_X = \{4, 5, 6\}.$
 - (d) The Range of Y, R_Y , is given by
 - i. $R_Y = \{1, 2, 3, 4, 5, 6\}.$
 - ii. $R_Y = \{1\}.$
 - iii. $R_Y = \{1, 2, 3\}.$
 - (e) Do X and Y have the same range?
 - (f) The probability mass function of X is given by
 - i. $f_X(i) = \frac{i}{3}$ for $i \in R_X$
 - ii. $f_X(i) = \frac{2i-1}{36}$ for $i \in R_X$
 - iii. $f_X(i) = 1$ for $i \in R_X$
 - (g) The probability mass function of Y is given by
 - i. $f_Y(i) = \frac{2(7-i)-1}{36}$ for $i \in R_Y$ ii. $f_Y(i) = \frac{i}{3}$ for $i \in R_Y$ iii. $f_Y(i) = 1$ for $i \in R_Y$
 - (h) Is it true that X and Y have the same distribution ?
- 2. Two dice are rolled. Let X denote the product of the dice and let Y denote the value of the first die.

(a)
$$\mathbb{P}(X = 12)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(b)
$$\mathbb{P}(Y=4)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(c)
$$\mathbb{P}(X = 12, Y = 4)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(d)
$$\mathbb{P}(X=5)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(e) Is it true that X and Y are independent?

	X = -1	X = 0	X = 2
Y = 0	1/12	0	3/12
Y = 1	2/12	1/12	0
Y = 2	3/12	1/12	1/12

3. Let X and Y be random variables with joint distribution given by the chart below.

Then

(a)
$$\mathbb{P}(X=0) = \text{is} \left[\begin{array}{c} \frac{(i)}{(ii)} \end{array} \right]$$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(b)
$$\mathbb{P}(Y=1) =$$
is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(c)
$$\mathbb{P}(X = 2|Y = 2)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(d)
$$\mathbb{P}(Y = 2 | X = 2)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. g.c.d $\{(i), (ii)\} = 1$.

- (e) Is it true that X and Y are independent?
- 4. Suppose S is a sample space consisting of sequences of two coin flips. Let X be a random variable that is 1 if the first coin is heads, and 0 otherwise and Y be a

random variable that is 1 if the first coin is tails, and 0 otherwise, and Z be a random variable that is 1 if the second coin is tails, and 0 otherwise.

- (a) Do X, Y, and Z have the same p.m.f.?
 - i. Yes
 - ii. No
- (b) Do the pairs (X, Y) and (X, Z) have same joint p.m.f.?
 - i. Yes
 - ii. No
- (c) Are X and Y independent?
 - i. Yes
 - ii. No
- (d) Are X and Z independent?
 - i. Yes
 - ii. No
- 5. An urn has four balls labeled 1, 2, 3, and 4. A first ball is drawn and its number is denoted by X. A second ball is then drawn from the three remaining balls in the urn and its number is denoted by Y.

(a)
$$\mathbb{P}(X=1)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(b)
$$\mathbb{P}(Y = 2|X = 1)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(c)
$$\mathbb{P}(Y=2)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(d)
$$\mathbb{P}(X = 1, Y = 2)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$. (e) Is is true that X and Y are independent?

6. Two dice are rolled. Let X denote the sum of the dice and let Y denote the value of the first die.

(a)
$$\mathbb{P}(X=7)$$
 is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(b)
$$\mathbb{P}(Y=4)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(c)
$$\mathbb{P}(X = 7, Y = 4)$$
 is $(i) / (ii)$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(d)
$$\mathbb{P}(X=5)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(e)
$$\mathbb{P}(X = 5, Y = 4)$$
 is $\frac{(i)}{(ii)}$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$. (f) Is it true that X and Y are independent?

- 7. Suppose that the number of earthquakes that occur in a year, anywhere in the world, is a Poisson random variable X with mean 5. Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is 1/3. Let Y be the number of earthquakes in year that have magnitude at least 5.
 - (a) Using the function dpois in R, calculate $\mathbb{P}(X = 10)$, the probability that there are 10 earthquakes in a particular year¹. Choose the correct answer from below.
 - i. [1] 0.0241
 - ii. [1] 0.0181
 - iii. [1] 0.0321
 - (b) Using the function dbinom in R, calculate $\mathbb{P}(Y = 5 | X = 10)$, the probability that there are 5 earthquakes with magnitude at least 5, given that there are 10 earthquakes in a year². Choose the correct answer from below.
 - i. [1] 0.1365
 - ii. [1] 0.1259
 - iii. [1] 0.1482
 - (c) Using the function dpois in R, calculate $\mathbb{P}(Y = 5)$, the probability that there are 5 earthquakes of magnitude at least 5 in a particular year³. Choose the correct answer from below.
 - i. [1] 0.02146
 - ii. [1] 0.02024
 - iii. [1] 0.02298

¹Recall from previous HW: $X \sim Poisson(5)$

²Recall from previous HW:: $Y|(X = k) \sim Binomial(k, 1/3)$

³Recall from previous HW: $Y \sim Poisson(5/3)$