For numerical answers with decimal digits please read instructions.

- 1. A pair of fair distinguishable dice are thrown. Let X represent the maximum of the two values on the dice and let Y represent the minimum of the two values.
 - (a) S is the domain of functions X and Y. Then number of elements in S is _____.
 - (b) Ranges of X and Y are respectively:
 - i. $\{2,3,4,5,6\}$ and $\{1,2,3,4,5\}$
 - ii. $\{1,2,3,4,5,6\}$ and $\{1,2,3,4,5,6\}$
 - iii. $\{2,3,4,5,6\}$ and $\{1,2,3,4,5,6\}$
 - iv. None of the above
 - (c) $\mathbb{P}(X=5)$ is equal to $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
 - (d) $\mathbb{P}(Y=3)$ is equal to $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- 2. A class of ten students is comprised of seven women and three men. Four students are randomly selected from the class. Let Z denote the number of men among the four randomly selected students. Then $\mathbb{P}(Z=2)$ is equal to $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- 3. Of the people who enter a blood bank to donate blood, 1 in 3 have type O^+ blood and 1 in 15 have type O^- blood. For the next three people entering the blood bank, let X denote the number with type O^+ blood and Y the number with type O^- blood.
 - (a) Distribution of X is best approximated by:
 - i. $\mathbb{P}(X=0)=.2963, \mathbb{P}(X=1)=0.4444, \mathbb{P}(X=2)=0.2222, \mathbb{P}(X=3)=0.037$

ii.
$$\mathbb{P}(X=0) = .29, \mathbb{P}(X=1) = 0.4444, \mathbb{P}(X=2) = 0.227, \mathbb{P}(X=3) = 0.0385$$

(b) Distribution of Y is best approximated by:

- i. $\mathbb{P}(Y=0)=0.839, \mathbb{P}(Y=1)=0.1342, \mathbb{P}(Y=2)=0.0101, \mathbb{P}(Y=3)=0.0166$
- ii. $\mathbb{P}(Y=0)=0.813, \mathbb{P}(Y=1)=0.1742, \mathbb{P}(Y=2)=0.0124, \mathbb{P}(Y=3)=0.0003$
- 4. Using the help() command understand that the inbuilt R-function ppois(q,lambda) returns the probability of a Poisson random variable with mean lambda having a value lesser than or equal to q. Choose the correct answer after evaluating the following expressions in R.

- (a) > ppois(4,5)
 i. [1] 0.4139
 ii. [1] 0.4723
 iii. [1] 0.4723
 iii. [1] 0.4404
 (b) > ppois(10,5)
 i. [1] 0.9927
 ii. [1] 0.9863
 - iii. [1] 0.9726
- 5. Using the help() command understand that the inbuilt R-function dpois(x,lambda) returns the probability of a Poisson random variable with mean lambda having a value equal to x. Choose the correct answer after evaluating the following expressions in R.
 - (a) > dpois(4,5)
 - i. [1] 0.1754
 - ii. [1] 0.1827
 - iii. [1] 0.1946
 - (b) > dpois(10,5)
 - i. [1] 0.0181
 - ii. [1] 0.0273
 - iii. [1] 0.0289
- 6. Using the help() command understand that the inbuilt R-function qpois(p,lambda) returns the smallest value x such that the probability of a Poisson random variable with mean lambda having a value lesser than or equal to x is at least p. Choose the correct answer after evaluating the following expressions in R.