For numerical answers with decimal digits please read instructions.

1. Suppose a population of size N contains G Green people and B Blue people, with N = G + B. A sample of size $n, 1 \le n \le N$ is taken. Let $1 \le g \le \min(n, G)$. Assume the sample is unordered and obtained with replacement. The Probability that g- Green people are selected in the sample is:

(a)
$$\frac{\binom{G+g-1}{g}\binom{B+n-g-1}{n-g}}{\binom{N+n-1}{n}}$$

(b)
$$\frac{\frac{G+g-1P_gB+n-g-1P_{n-g}}{N+n-1P_n}}{\binom{G+g-1}{g-1}\binom{B+n-g-1}{n-g}}$$

(c)
$$\frac{\binom{G+g-1}{g-1}\binom{B+n-g-1}{n-g}}{\binom{N+n-1}{n-1}}$$

- (d) None of the above
- 2. Suppose that the number of earthquakes that occur in a year, anywhere in the world, is a Poisson random variable with mean 5. Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is 1/3.
 - (a) The probability that there are 10 earthquarkes in a particular year is ______ Give your answer rounded up to four decimal digits
 - (b) Given that there are 10 earthquakes the Probability that there are 5 earthquakes with magnitude at least 5 is ______ Give your answer rounded up to four decimal digits
 - (c) The Joint Probability that there are 10 earthquakes in a given year and 5 of those earthquakes are with magnitude at least 5 is ______ Give your answer rounded up to four decimal digits
- 3. Suppose that the number of earthquakes that occur in a year, anywhere in the world, is a Poisson random variable with mean λ . Suppose that the probability that any given earthquake has magnitude at least 5 on the Richter scale is p. Probability that there are n earthquakes with magnitude at least 5 in a year is:

i.
$$\frac{e^{-\lambda(1-p)}(\lambda(1-p))^n}{n!}$$

ii.
$$\frac{e^{-\lambda p}(\lambda p)^n}{n!}$$

iii.
$$e^{-\lambda p}p^n$$

iv.
$$e^{-\lambda(1-p)}(1-p)^n$$

4. A box contains 100 balls, of which 40 are white. A sample of 10 balls are drawn at random and **without** replacement. Let A_3 denote the event that the ball drawn on the 3rd draw is white. Then the probability of A_3 is given by equal to $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.

- 5. Satnam is a 70% free throw shooter. Assume each attempted free throw is independent of every other attempt ¹.
 - (a) Probability that Satnam will make exactly seven of ten attempted free throws

is
$$\frac{(i)}{(ii)}$$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

- (b) Most likely number of free throws Satnam will make if he attempts 12 is _____. *Give your answer rounded up to four decimal digits.*
- 6. Continuing the previous exercise¹, Geetha isn't as good a free throw shooter as Satnam, but she can still make a shot 40% of the time. Satnam and Geetha play a game where the first one to sink a free throw is the winner. Since Geetha isn't as skilled a player, she goes first to make it more fair.
 - (a) Probability that Geetha will win the game on her first shot is $\left| \begin{array}{c} \frac{(i)}{(ii)} \end{array} \right|$.

The above fraction should be in the simplest form, i.e. g.c.d $\{ (i), (ii) \} = 1$.

(b) Probability that Satnam will win this game on his first shot is

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$. (Remember, for Satnam even to get a chance to shoot, Geetha must miss her first shot.)

(c) Probability that Geetha will win the game on her second shot is $\left| \begin{array}{c} (i) \\ (ii) \end{array} \right|$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

(d) Probability that Geetha will win the game is $\frac{(i)}{(ii)}$.

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

- 7. Using the help() command understand that the inbuilt R-function phyper(q,m,n,k) returns the probability of getting fewer than or equal to q white balls in an experiment of picking k balls without replacement from a bag of m white balls and n black balls². Please indicate the correct answer after evaluating the following expressions in R:
 - (a) > phyper(1,5,15,10)

 $^{^1\}mathrm{For}$ calculations in this question you may use the R commands fractions and choose appropriately.

 $^{^{2}}$ This is the setting of the hypergeometric distribution and phyper gives us the cumulative distribution function.

i. [1] 0.2743 ii. [1] 0.1517 iii. [1] 0.0739

(b) > phyper(4,5,15,10)

- i. [1] 0.8742 ii. [1] 0.9979
- iii. [1] 0.9837

Note: We can use d, p, q along with any distribution name to get the density function, cumulative distribution function and quantile function respectively.