For numerical answers with decimal digits please read instructions.

- 1. Let $X \sim \text{Uniform}(\{1,2,3\})$ and $Y \sim \text{Uniform}(\{1,2,3\})$ be independent and let Z = X + Y.
 - (a) The range of Z is:
 - i. 2,3,4,5
 - ii. 2,3,4,6
 - iii. 2,3,4,5,6
 - iv. None of the above

(c) $\mathbb{P}(Z=5) = \frac{(i)}{(ii)}.$

The above fraction should be in the simplest form, i.e. $g.c.d \{ (i), (ii) \} = 1$.

- (d) Is Z uniformly distributed over its range?
 - i. Yes
 - ii. No
- 2. Let X, Y be two random variables with joint probability mass function given by

$$\mathbb{P}(X = i, Y = j) = \frac{1}{2^{i+j}}, \qquad i, j \in \mathbb{N}.$$

Then

- (a) $\mathbb{P}(X + Y = 4)$ is $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- (b) $\mathbb{P}(X Y = 2)$ is $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- 3. Three dices are rolled. Probability that the sum of three dice will equal six is $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- 4. Let X and Y be independent random variables each geometrically distributed with parameter p.

(a) Given
$$p = 0.5$$
, $\mathbb{P}(\min(X, Y) = 5)$ is $\frac{(i)}{(ii)}$.
The above fraction should be in the simplest form, i.e. g.c.d { $(i), (ii)$ } =1.

- (b) Given $p = \frac{1}{3}$, $\mathbb{P}(\min(X, Y) = X)$ is $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- (c) Given $p = \frac{1}{8}$, then $\mathbb{P}(X + Y = 5)$ is $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- (d) Given p = 0.6, $\mathbb{P}(X > 11|X > 5)$ is $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- (e) Let $0 , <math>\mathbb{P}(Y = 5|X + Y = 15)$ is $\frac{(i)}{(ii)}$. The above fraction should be in the simplest form, i.e. g.c.d { (i), (ii) } =1.
- 5. Let 0 < p, q < 1, $X \sim \text{Bernoulli}(p)$, and $Y \sim \text{Bernoulli}(q)$ be independent.
 - (a) Is XY a Bernoulli random variable?
 - i. Yes
 - ii. No
 - (b) Is X + Y XY a Bernoulli random variable?
 - i. Yes
 - ii. No