- 1. Binomial Distribution: The inbuilt R-function rbinom(m,n,p) returns m random samples from the Binomial(n, p) distribution (See help(rbinom) for more information). In R, n is referred to as given size and probability of success p as prob.
 - (a) Simulation: The below code generates 10 samples from Binomial (20, 0.75)

```
> rbinom(10,20,0.75)
```

Modify the above code to generate 1000 samples from Binomial(35, 0.3)

(b) **Sample versus True: (Mean and Variance)** The below code generates 10000 samples from Binomial (20, 0.75) and computes the sample mean, and sample variance.

```
> set.seed(sample(1:100,1))
> #__(Refer to https://r-coder.com/set-seed-r/ for more information)
> mean(rbinom(10000,20,0.75))
> #__(calculating the sample mean)
> 
> var(rbinom(10000,20,0.75))
> #__(calculating the sample variance)
```

Compute the above in ${\tt R}$ and see how they relate to the true population mean and variance¹.

(c) **Histogram versus True Probability:** The below code generates 10000 samples from Binomial (20, 0.75) and plots a histogram of relative frequency along with a lineplot of the true Binomial probabilities².

Histogram and True Probability

¹which are 20 * 0.75 = 15 and 20 * 0.75 * 0.25 = 3.75, respectively.

²i.e. $f(k) = \binom{20}{k} (0.75)^k (0.25)^{20-k}$ for $k = 0, 1, \dots, 20$.

- 2. Geometric Distribution: The inbuilt R-function rgeom(m,prob) returns m random samples from the Geometric distribution of the given probability prob.
 - (a) **Simulation:** The below code generates 10 samples from Geometric(0.1)

```
> rgeom(10,0.1)
```

Modify the above code to generate 1000 samples from Geometric(0.3).

(b) Sample versus True: (Mean and Variance) The below code generates 10000 samples from Geometric(0.1) and computes the sample mean, and sample variance.

```
> set.seed(sample(1:100,1))
> #__(Refer to https://r-coder.com/set-seed-r/ for more information)
> 
> mean(rgeom(10000,0.1))
> #__(calculating the sample mean)
> 
> var(rgeom(10000,0.1))
> #__(calculating the sample variance)
```

Compute the above in ${\tt R}$ and see how they relate to the true population mean and variance^3.

(c) **Histogram versus True Probability:** The below code generates 10000 samples from Geometric (0.1) and plots a histogram of relative frequency along with a lineplot of the true Geometric probabilities⁴.

Histogram and True Probability

 $^{^{3}}$ which are 10 and 90, respectively.

⁴i.e. $f(k) = (0.9)^{k-1}(0.1)$ for k = 1, ...,