Linear Statistical Models

Week-4: Graded Assignment

Subjective Assignment: (Manual-grading)

Max. Marks: 25

Note: R is not required for this assignment.

1. Consider a Linear Model:

$$y_{ij} = \mu + \mu_i + \epsilon_{ij}$$
; $1 \le i \le 2, \ 1 \le j \le 2$

Decide if the parameters μ and μ_i are identifiable from the model. If not then specify a condition for the same. [2 Marks]

2. Consider a model:

$$y_{1} = \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + \epsilon_{1} ;$$

$$y_{2} = \beta_{1} + \beta_{3} - \beta_{2} - \beta_{4} + \epsilon_{2} ;$$

$$y_{3} = \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} + \epsilon_{3} ;$$

$$y_{4} = \beta_{1} + \beta_{4} - \beta_{2} - \beta_{3} + \epsilon_{4}$$

where, $\beta_i \in R$; i = 1, 2, 3, 4 and ϵ_i 's (i = 1, 2, 3, 4) are uncorrelated random variables with variance σ^2 .

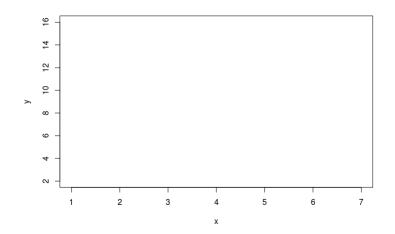
- (a) If we want to rewrite the model as $(Y, X\beta, I_{4\times 4})$, then find Y, X, β and ϵ . [2 Marks]
- (b) Write down the Normal equation for the above model. [3 Marks]
- (c) Using the normal equation obtained in part (c), find the least square estimates of $\beta_1, \beta_2, \beta_3$ and β_4 . [4 Marks]
- 3. Consider a model:

$$y_1 = 12\beta_1 + 6\beta_2 + \epsilon_1$$
;
 $y_2 = 10\beta_1 - 2\beta_2 + \epsilon_2.$

where, ϵ_i 's (i = 1, 2) are uncorrelated random variables with variance 1.

(a) Compute the expression for $\|Y - X\beta\|_2$. [2 Marks]

(b) Let
$$\underset{\sim}{Y} = \begin{pmatrix} 48\\12 \end{pmatrix}$$
, then for which of the following value of $\underset{\sim}{\beta}$ will the value of $\|Y - X\beta\|_2$ is minimum? [2 Marks]


(i).
$$\begin{array}{l} \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ (ii). \quad \beta = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ (iii). \quad \beta = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ (iv). \quad \beta = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \end{array}$$

4. Consider the following data.

$\stackrel{x}{\sim}$	$\stackrel{y}{\sim}$
1	$\frac{\sim}{2}$
2	3
3	1
4	4
5	6
6	5
7	7

(a) Make a scatter plot of (x, y) in the graph below: [2]

- (b) Suppose we assume the linear model $(Y, X\beta, I_{7\times 7})$ for the data obtained from the scatter plot. Find the least square estimate for β . [4 Marks]
- 5. Consider a 2 × 2 matrix $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Find Column space (A), Row space (A), Null space (A) and Column space (A^T). [4 Marks]