Linear Statistical Models

Week-3: Graded Assignment

Subjective Assignment: (Manual-grading)

Max. Marks: 35

NOTE: All the plots should be properly labelled.

1. Consider the Linear Model:

$$y_{ij} = \mu + \mu_i + \epsilon_{ij} \quad ; \quad 1 \le j \le n_i \,, \, 1 \le i \le 3$$

Feel free to use the draft code available in the 'Supplementary Contents' \rightarrow 'Week-3' on the portal.

- (a) If $\epsilon_{ij} \sim N(0, 1)$, then find the distribution of y_{ij} . Elaborate on your answer. [3 Marks]
- (b) Generate possible random values using R for μ , μ_i and n_i as generated in code draft provided. [1 Mark]

<u>Note</u>: The value of n_i 's should be greater than or equal to 100.

- (c) Using R, generate the dataset, i.e. y_{ij} , and store it in a data frame. [3 Marks]
- (d) Using R, find the mean of y_i 's denoted by y_{io} using the generated dataset.

Hint:
$$y_{io} = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$
 [1 Mark]

- (e) Using R, compute the following: [3 Marks]
 - i. Sum of squares within group, i.e. SSW
 - ii. Sum of squares between group, i.e. SSB
 - iii. Total sum of squares, i.e. TSS
- (f) Using **R**, verify that TSS = SSB + SSW. [1 N
- (g) Iterate the steps in part (c), (d) and (e) more than 100 times using R. [5 Marks] *Hint:* Randomly generate a number greater than 100, and perform that many iterations.
- (h) Using R, store the values of SSW, SSB and TSS computed in part (g) in a data frame. [2 Marks]
- (i) Using R, plot the histogram of values obtained for each of SSW, SSB and TSS.
 [3 Marks]
- (j) In each of the above plotted histogram, fit the density curve of 'Chi-square Distribution' to verify the following: [8 Marks]

[1 Mark]

- i. $SSW \sim \chi^2$ with degree of freedom = 2.
- ii. $SSB \sim \chi^2$ with degree of freedom = n 3. where, $n = n_1 + n_2 + n_3$
- iii. $TSS \sim \chi^2$ with degree of freedom = n-1.

Also, comment on each of the obtained histograms.

2. Suppose $\underset{\sim}{Y} = X_{\stackrel{\sim}{\sim}}^{\beta} + \underset{\sim}{\epsilon}$ be a linear model, where

$$Y = (y_1, y_2, y_3, \dots, y_n)^T,$$
$$\beta = (\beta_1, \beta_2, \beta_3, \dots, \beta_m)^T,$$
$$X = ((x_{ij})) \quad ; 1 \le i \le n, 1 \le j \le m$$

and

$$\underset{\sim}{\epsilon} = (\epsilon_1, \epsilon_2, \epsilon_3, \dots, \epsilon_n)^T$$

where, ϵ has mean 0 and variance covariance matrix $\sigma^2 I_{n \times n}$. Let $p^T \beta = p_1 \beta_1 + p_2 \beta_2 + \ldots + p_m \beta_m \forall p \in \mathbb{R}^m$. Suppose there is a $l \in \mathbb{R}^n$ such that:

$$E[\underset{\sim}{l}^{T}Y] = p^{T}\underset{\sim}{\beta}, \ \forall \ \underset{\sim}{\beta} \in \mathbb{R}^{m}$$

then show that there is a $\underset{\sim}{l} \in \mathbb{R}^n$ such that:

$$\underset{\sim}{l}^{T}X\beta = p^{T}\beta, \ \forall \ \underset{\sim}{\beta \in \mathbb{R}^{m}}$$

[5 Marks]