Recall: . (Y, XB, Jarn) - linear model
$9i = \beta_0 + \beta_1 x_{11} + \cdots + \beta_m x_{1m} + \epsilon i = i \leq n$
$E_i = uncorrelated r.u. with mean s and variance s^2 I_{n \times n}.$
Least square Estimate: A (random) vector & G R is called
a least square estimate of p if
(*)]] y - x ê 2 = min y - x <u>e</u> 2 BER
<u>Solucitor</u>
least square estimate \$ of p
Satisfies $(X^T \times) \hat{\beta} = X^T \tilde{2} \cdots \hat{\beta}$
(normal requations)

<u>Example</u> : Given litre data <u>215</u>
linear model
$ \begin{aligned} y &= \beta_0 + \beta_1 x + \epsilon & \frac{3}{2} \begin{vmatrix} z \\ 1 \\ 4 \end{vmatrix} \\ \\ \epsilon_{\text{reor-}} \end{aligned} $
$ \begin{aligned} \mathbf{\tilde{X}} &= \begin{pmatrix} 1 & 2 \\ \cdot & 3_{\ell_{\mathbf{z}}} \end{pmatrix} \qquad \stackrel{\mathbf{\tilde{y}}}{=} = \begin{pmatrix} 1 \\ 2 \\ \cdot \end{pmatrix} \qquad \stackrel{\mathbf{\tilde{y}}}{=} = \begin{pmatrix} \mathbf{\tilde{x}} \\ \mathbf{\tilde{x}} \end{pmatrix} \\ \begin{pmatrix} \mathbf{\tilde{x}} \\ \mathbf{\tilde{x}} \end{pmatrix} \end{aligned} $
Find the least square estimate fs
S_{olve} : $\chi^{T}\chi = \chi^{T}y$
$\chi^{T} \chi = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3_{1_{2}} & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3_{1_{2}} \end{pmatrix} = \begin{pmatrix} 3 & 7.5 \\ 7.5 & 89 \\ 4 & 4 \end{pmatrix}$
$\chi^{T} \underline{\mathcal{Y}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3_{1/2} & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 & 3_{1/2} & 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 2 & 1 \end{pmatrix}$
$ \begin{pmatrix} 3 & 7.5 \\ 7.5 & 89 \\ 7.5 & \frac{89}{5} \end{pmatrix} \begin{pmatrix} \beta \\ \beta \\ \beta \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix} $
Ex: (linear algebra) $\hat{\beta}_{0} = 43$ $\hat{\beta}_{1} = -\frac{2}{7}$
Understanding litre estimates Âs & Ês,
Simple linear regression:

y = po + p, x; + Ei l≤i≤n Ei = uncorrelated mean o € Least square estimates: po, ps,
$they solve X^{\overline{1}} \times \beta = X^{\overline{1}} \underbrace{\Im}_{-2} - \textcircled{}_{-2}$
$X = \begin{pmatrix} \cdot & x^{0} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \tilde{a} = \begin{pmatrix} a^{0} \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$
$\chi^{\uparrow} \times = \begin{pmatrix} 1 & \cdots & 1 \\ \chi_{1} & \cdots & \chi_{n} \end{pmatrix} \begin{pmatrix} 1 & \chi_{1} \\ \vdots & \vdots \\ \vdots & \chi_{n} \end{pmatrix} = \begin{pmatrix} n & \frac{2}{2} \chi^{\downarrow} \\ \frac{2}{2} \chi^{\downarrow} & \frac{2}{2} \chi^{\downarrow} \\ \frac{2}{2} \chi^{\downarrow} & \frac{2}{2} \chi^{\downarrow} \end{pmatrix}$
$x^{T} \mathfrak{Z} = \begin{pmatrix} k \\ \mathfrak{Z} \mathfrak{S} \mathfrak{S} \mathfrak{L} \\ \mathfrak{Z} \mathfrak{R} \mathfrak{L} \mathfrak{S} \mathfrak{S} \end{pmatrix} (E K.)$
$\frac{\text{Solution to (i)}}{\beta_0 = 5 - \beta_1 \overline{r}}$
$\hat{\beta}_{z} = \frac{\sum_{i=1}^{2} (2i - \overline{z}) (2i - \overline{z})}{\sum_{i=1}^{2} (2i - \overline{z})^{2}}$
$\hat{z} = \int_{2}^{2} \sum_{i=1}^{2} \lambda_{i} \qquad \hat{z} = \int_{2}^{2} \sum_{i=1}^{2} \lambda_{i}^{2}$
$RSS = \text{Residual Sun of squares}$ $(y_1 - \hat{\beta}_0 - \hat{\beta}_1 \pi_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 \pi_2)^2 + \dots + (y_n - \beta_0 - \beta_1 \pi_n)^2$
Q: How to assess the accuvacy of this?

Recall: (Day 1) In R - we area too lines
and then trice to find the "best line".
Lecture 2: Ans: Y- some characteritie of the population
je - nean of Y., variance of Y = 5
Given: - 10, 4,, y, n=1 n-sample points
Estimate u from data;
$\hat{\mu} := \frac{1}{n} \frac{2}{\xi^2} y_{\zeta} = estimate of \mu$
j. Is ju a good estimator of ju?
$\frac{A}{1}: \hat{\mu} \text{is an unbiased estimate of } \mu (E[\hat{\mu}] = \mu)$
can this be carried over to Bs, B1?
Ex: Truc
· Var(j) = Var(1 2 02)
$= \sigma_{n}^{L}$
(n large =) reduction in variance of \$\$)
can this be carried over to \$3, \$1?
$\hat{\beta}_{s} = \bar{\vartheta} - \hat{\beta}_{s} \bar{\lambda}_{s}$
$\hat{\beta}_{s} = \frac{1}{2} (2i - \overline{z}) (2i - \overline{z}) $ deterministri
$E = \beta_{i} + \beta_{i} \lambda_{i}$ $E = \beta_{i} + \beta_{i} \lambda_{i}$ $Var(y_{i}) = \sigma^{1}$

$\underline{Ex}:- Variana (\hat{\beta}_{0}) = \sigma^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum_{i=1}^{2} (x_{i}-\bar{x}_{i})^{2}} \right]$
. Variance $(\beta_i) = \frac{\sigma^2}{\Xi(\chi_i - \chi_i)^2}$ $\frac{\Xi}{\Xi_i}$
Observation: - more at all spread out =) Smaller is the valuance $(\hat{\beta}_i)$
Interval estimate for (S_2, β_1) : $(\hat{\beta}_1 - 2 \int \operatorname{Var}(\hat{\beta}_1), \hat{\beta}_1 + 2 \int \operatorname{Var}(\hat{\beta}_1))$ is a 95%. Confidence interval for β_1
$(\hat{\beta}_0 - 2 \int var(\hat{\beta}_0), \hat{\beta}_0 + 2 \int var(\hat{\beta}_0))$ is a 9.5%. Confidence interval for β_0
Recell: a similar procedure yields a contidence interval for M.
Hypothesis testing: Ho: M=0 HA = M=0 C Device test shortistic to see of we have evidence to reject the null hypothesis)
can this be carried over to Bo, Bi?

$H_{a}: \beta_{1} = 0 \qquad H_{A} = \beta_{1} \neq 0$
" $y_i = \beta_0 + \epsilon_i$ " (X is not associated with y)
• Standard (B,) < < < small envir - even small values of B1 ~ B1 = B1 = 5
· Standard (B,) >>> larse enver - only large vakes e) Bi mas B, =0.
In practice one does a t-fest
$t = \frac{\hat{\beta}_{1} - \circ}{\sqrt{\sqrt{\alpha}r(\hat{\beta}_{1})}} \longrightarrow$
Under the: Bi== (there is no relationship between x and s)
De has t _{n-1} - distribution
$\frac{\text{lecture 3}}{P(t_{n-1} > t)} \sim P_{j} \text{ und}$
a small prualice indicates that it is unlikely to observe a substantial between 5 and 2
Assess Ite nodel: -

The quality of a linear regression is assessed by two quantities
- residual standard error (RSE)
- R ² statistic.
<u>RSE</u> : - provides an absolute neasure of "lack of fit"
RSS = Residual Sun of squares
$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \cdots + (y_n - \beta_0 - \beta_1 x_n)^2$
RSE:= RSS ("estimate of o")
$= \sqrt{\frac{1}{c^{2}} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2} - \frac{1}{2}\right)^{2}} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}\right)^{2}}{2} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}\right)^{2}} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}\right)^{2}}{2} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}\right)^{2}} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}\right)^{2}}{2} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}\right)^{2}} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}}{2} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}\right)^{2}} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s} - \beta_{s}\pi i\right)^{2}}{2} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s}\pi i\right)^{2}}{2} + \frac{1}{2} \left(\frac{2}{c^{2}}\right)^{2}} + \frac{1}{2} \left(\frac{2}{c^{2}}\left(9c - \beta_{s}\pi i\right)^{2}}{2} + \frac{1}{2} \left(\frac{2}{c^{2}}$
"Yi 2 B F, Zu" = RSE Sonall D = "model fits the data
\geq " bi \Rightarrow $\hat{\beta}_{0} - \hat{\beta}_{1} \cdot \lambda_{1}^{N} \equiv R_{SE}$ larse
(x) = "model fits the data
$\frac{R^2 \text{ statistic}}{T \leq S} = \sum_{\substack{i=1\\c=1}}^{2} (4i - 5)^2$

• $TSS \equiv$ measures the variance dY
RSS = neasures the variability that is not explained post tit from the nodel
TSS - RSS = measures the amount of variability in the data y that is explained by performing least squares.
R ¹ = measures the proportion of variability in 15 15 at can be explained by using *
R~1 ((love to A) large prometion of main a builder
R=1 (close to 1) large proportion of variability is explained by the model
$k^{2} \simeq 0$ (Clox to 0) linear model is perhaps wrong
$\mathbb{P}^{2} \simeq 0$ (Clox to 0) linear model is perhaps where s
$P^2 \simeq 0$ (Clox to D) linear model is perhaps where g