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Deptadent data

e Bivariate Data that are coupled or matched together.

They are not independent.
Example:
e Height and Weight measurements of individuals.

e Response reading before and after treatment of

individuals.
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e lLeonardo da Vinci's Vitruvian Man.
male models

e The outstretched arms and legs within circles and square.

e |deal human proportions described by ancient Roman

architect Vitrivius: height is same as length of arm span.
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Paired Data

Consider fat dataset in UsingR package. The dataset
contains body dimensions of 252 males.

> require(UsingR)

> names(fat)

[1] "case" "body.fat" "body.fat.siri"
[4] "density" "age" "weight"
[7] "height" "BMI" "ffweight"

[10] "neck" "chest" "abdomen"

[13] "hip" "thigh" "knee"

[16] "ankle" "bicep" "forearm"

[19] "wrist"



e Suppose we are interested in relation between neck and

wrist.
We can first compare averages in two ways: e el
> z = mean(fat$neck) /mean(fatPwrist)
>z Y = ne
[1] 2.084068
> y = mean(fat$neck/fat$wrist) Y
>y Qa_;@at)?-

[1] 2.084477



Paired Data: dataset in UsingR

> plot(fat$wrist, fat$neck)
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Paired Data: dataset in UsingR

par (mfrow=c(1,2))

vV Vv

plot(neck™wrist, data=fat)
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plot(neck™wrist, data=fat, subset=20<=age &age <30)
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The variables seem related and also by a linear relationship



Paired Data: Correlation

e Assume Linear Relationship between the data
e Correlation is a measure of how close the relationship is.

Before defining the term let us try to understand the plot
better.



Data in four regions by means
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Data in four regions by means
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e Understand data by those above average values and those
below.

e If related then most of data should be in first and third
box.



Paired Data: dataset in UsingR

>
>
>
>
+

plot(fat$wrist [100:175], fat$neck[100:175])
abline(v=mean(fat$wrist[100:175]))

abline (h=mean(fat$neck[100:175]))
points(mean(fat$wrist[100:175]), mean(fat$neck[100:175])
pch=16, col=rgb(.35,0,0))
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Paired Data: dataset in UsingR

>
>
>
>
+

plot(fat$age[100:175], fat$ankle[100:175])
abline(v=mean(fat$age[100:175]))

abline (h=mean(fat$ankle[100:175]))
points(mean(fat$age[100:175]), mean(fat$ankle[100:175]),
pch=16, col=rgb(.35,0,0))
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Covariance

Covariance measures the difference between the two variables
in the four regions. Suppose we have a dataset
{(xi,yi) : 1 < i< n} then

Z - )

=1

Cov(x,y)

e Data with strong linear relationship (x; — )'())(y,- —y) will
have the same sign. (i.e if data lies in first and third box

or in second and fourth box).

e In such cases covariance will be large in absolute value.



Pearson Correlation Coefficient

Correlation is Covariance in standardised scale. Suppose we
have a dataset {(x;,y;) : 1 < i < n} then

Cor(x,y) = nili <(Xi5:)_<)> ((yIS_yY)>

i=1

e Cor(x, y) is between —1 and 1.
e Cor(x,y) € {1,—1} indicates perfect linear relationship.

e Cor(x,y) = 0 indicates no linear relationship.



Paired Data: dataset in UsingR

> cor(fat$wrist, fat$neck)
[1] 0.7448264

> cor(fat$wrist, fat$height)
[1] 0.3220653

> cor(fat$age, fat$ankle)
[1] -0.1050581



Pearson Correlation Coefficient

> require (MASS) Package
> plot(Animals$body,Animals$brain) —hAS<)
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Spearman Correlation Coefficient

> require (MASS)
> cor(Animals$body,Animals$brain)
[1] -0.005341163
e One way is to exclude the outliers.
e Another method is to transform the dataset by placing
data in order and assigning a rank. Use rank.
> require(MASS)
> cor(rank(Animals$body), rank(Animals$brain))
[1] 0.7162994
or
> require (MASS)
> cor(Animals$body, Animals$brain, method='ispearman")
[1] 0.7162994
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Spearman Correlation Coefficient

Suppose we have a dataset {(x;,y;) : 1 < i < n} then first
rank them to get .{(ry.,r,):1<i<n}

Spearman Correlation(x, y) = Cor(ry, r,)

e measurement of relationship of monotonic data.

e not restricted to linear.
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Chocolates and Noble Prizes
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Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.




Chocolates and Noble Prizes

Countries with more per capita chocolate

consumption have more per capita Nobel laureates.

Chocolate consumption cause better scientific

research |



Chocolates and Noble Prizes
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Chocolates and Noble Prizes

e Spurious: Facebook Users and Marks of users

e Causality: Smoking and lung cancer, Wine and heart risk.



Correlation

e Non-linear relationship

e ( correlation




Correlation

e Pearson correlation coefficient is a measure of the
linearity of the (possible) relationship between two
variables X and Y.

e Even if correlation coefficient is high, it does not mean
there is causal relationship between X and Y. Does not

tell you cause and effect ?
e Care to be taken when used for predictive purposes.

e Causality: Domain Knowledge, design a good control

experiment.
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Simple Linear Regression: Relationship in Bivariate

Data

e Key: conditional mean of response variable given the

predictor variable is a linear function.

e Model: For data points (x;,y;) with 1 </ < n,

yi = Bo + Pixi + i,

where ¢; assumed to be mean 0 and variance o> Normal

random variables.

e Observe only (x;,y;) for 1 < i< n.



Simple Linear Regression: Relationship in Bivariate

Data

e Find [y, /1 such that

n

Z(Yi — Bo — Bixi)?
i=1
is minimized.
e Can be solved: Calculus and Linear Algebra

5 _ i =X — ) S

pr = 0 - = correlation(x, y) =
D (X = X)? S2

Bo =y — Hix

Observations:

o Slope of line is function of Correlation in standarised scale.



Simple Linear Regression
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