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The aim of these lectures is to introduce random energy models, to under-
stand some of the problems, their solutions and techniques. Neither are the
results presented most general, nor are the paths geodesic.

1. How did we end up here:

The origins of the subject go back to our attempts to understand magnetism.
While it was felt that the collective behaviour of atoms — more precisely the
alignment of the spins — is the cause, the reasons for this collective behaviour
were not clear. The discovery by Curie in 1895 of the Curie point — a certain
temperature at which the magnetic property disappears — pressed for models to
explain the phenomenon. As Bovier [17] put it, Wilhelm Lenz (1888-1957) had
a beautiful and simple idea. Imagine atoms are at the sites of Zd, the integer
lattice. Assume the simplest spin variables ±1. Assume that only neighbours
interact and the interaction favours neighbouring atoms to take the same value.
There is an external magnetic field which favours globally + or globally − spin.
Bring in ideas from statistical mechanics and solve the problem. This was
the problem he gave to his student Ernest Ising and ever since this is known
as Ising model, sometimes called Lenz-Ising model (The Lenz Law in induced
magnetism is due to Heinrich Lenz (1804-1865)). Mathematical formulation
of the model is as follows. Since spins live on the integer lattice Zd and take
only ±1 values, the configuration space is {−1,+1}Zd

. If σ = (σi; i ∈ Zd)
is a configuration, then the energy of the system in this configuration, called
Hamiltonian, is H(σ) = −

∑
|i−j|=1

Jσiσj − h
∑
i

σi. Here the numbers J and

h are respectively the interaction between spins and strength of the external
field. Of course |i − j| = 1 means that the two points i and j of Zd differ by
exactly one coordinate, that is, they are neighbours. Eventhough the sum is over
neighbouring pairs, it is an infinite sum and does not converge. The best way to
interpret is to consider N particle system and take limit as N →∞. To do this
we first need some notation. For a set Λ ⊂ Zd, put ΩΛ = {−1,+1}Λ. For any
finite set Λ and σ ∈ ΩΛ and η ∈ ΩΛc put HΛ(σ|η) = −

∑
Λ Jσiσj − h

∑
ı∈Λ σi

where the first sum
∑

Λ is over all pairs i and j with |i− j| = 1 and at least one
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of them is in Λ. In such a case, either both i and j are in Λ or one of them is
in Λ and the other one in Λc; a boundary point of Λ. When this happens and
j ∈ Λc, the corresponding spin σi is to be taken as ηi. This is the energy of the
configuration σ in the finite volume Λ when the outside configuration is η. Of
course, since only neighbours interact, this depends only on sites in Λ and their
neighbours.

The key principle of statistical mechanics is the following (Feynman’s [30]).
If a system in equilibrium can be in one of N states then the probability of
the system having energy En is 1

Qe−En/κT where Q =
∑
n

e−En/κT . Here κ is

the Boltzman constant, T is temperature and Q is called the partition function.
The expected value of an observable quantity f is 1

Q

∑
i

f(i)e−Ei/κT . This fun-

damental law (formulated in the quantum set up) is the summit of statistical
mechanics and the entire subject is either slide down from the summit as the
principle is applied to various cases, or the climb up where the fundamental law
is derived and the concepts of thermal equilibrium and temperature T clarified.

Returning to the Lenz-Ising model, given a finite set Λ ⊂ Zd we have the
Hamiltonian HΛ(σ|η) defined above for σ ∈ ΩΛ and η ∈ ΩΛc . The partition
function is Zη

Λ =
∑

σ∈ΩΛ

e−βHΛ(σ|η). Here β is the inverse temperature and κ is

taken as one. Let FΛ denote the σ-field on Ω generated by the coordinate maps
in Λ. When Λ = Zd, we denote this σ-field by F . For a finite set Λ we can think
of the Gibbs distribution 1

Zη
Λ

exp{−βHΛ(σ|η)} as the conditional probability on
FΛ given FΛc . To describe the equilibrium state of the system, one looks for
a probability µ on (Ω,F) such that under µ the conditional probability on FΛ

given FΛc are as above for every finite subset Λ ⊂ Zd. Whether there is any such
probability at all, if so how many exist, if more than one exist then the nature
of the set of all such probabilities and its extreme points etc are all classical.
Moreover one considers general interaction functions (See Ruelle [48], Sinai [53],
Preston [47], Georgii [32]).

The present story starts with efforts to understand magnetic properties of
alloys. In the sixties there was much interest in the behaviour of isolated mag-
netic ‘impurities’ in non-magnetic hosts (like Mn in Cu or Fe in Au). The
magnetic moments are not arranged in a lattice. The interaction between the
magnetic moments is not always of the same sign. This calls for a change from
the classical set up. One does see spins exhibiting a collective behaviour, a
random freezing which exhibits several peculiarities. To explain the observed
phenomena a model was proposed by Edwards and Anderson in 1975.
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As Sherrington [52] says ‘Edwards and Anderson produced a paper in 1975
that at one fell swoop recognized the importance of the combination of frus-
tration and quenched disorder as the fundamental ingredients, introduced a
more convenient model, a new and novel method of analysis, new types of or-
der parameters, a new mean field theory, new approximation techniques, and
the prediction of a new type of phase transition apparently explaining the ob-
served (magnetic) susceptibility cusp. Edwards and Anderson’s new approach
was beautifully minimal, fascinating and attractive, their analysis was highly
novel and sophisticated, involving radically new concepts and methods but also
unusual and unproven ansatz, as well as several different approaches’. How-
ever, this model (see the Hamiltonian later in section 2) was not exactly solv-
able. Sherrington and Kirckpatrik proposed a mean-field model. The adjective
‘mean-field’ refers to the fact that each spin interacts with all the others. In
1981 and later in 1985, Bernard Derrida proposed two models called Random
Energy Model and Generalized Random Energy model.

In its bare essentials then, for an N -particle system we have a configuration
space ΣN and for each σ in this space we have a random variable HN (σ), the
Hamiltonian in this configuration. The partition function is ZN =

∑
σ

e−βHN (σ)

where β is the inverse temperature. There are three main issues which lead
to several problems. Firstly, does 1

N log ZN have a limit and if so is it non-
random. This is the limiting energy, or just energy. It is important to have this
limit to be non-random. Secondly, we have random Gibbs measures GN (σ) =
e−βHN (σ)/ZN on the space ΣN . This is random because HN is so. Can we say
anything about their limit over N . Of course this needs careful formulation,
since these Gibbs measures live on different spaces. Thirdly, the ground state in
any system is the configuration having minimum energy and the ground state
energy is the minimum possible energy. Thus we are looking at min

σ
HN (σ) and

the states σ where it is attained. Can we say anything about their asymptotics?
The first issue, loosely put, says that a random quantity (like 1

N log ZN )
which depends smoothly on a large number of independent variables, but not
too much on any one of them is essentially constant. Formulated this way it
leads to an extremely rich and powerful theory [52]. The third issue formulated
as an optimization problem with random quantities, again belongs to a bigger
picture, known as, combinatorial optimization theory [54].

2. Examples of Hamiltonians:

The N particle configuration space is denoted by ΣN . The Hamiltonian is
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defined for σ in this space. We start with classical non-random Hamiltonians.
Curie-Weiss Ising Model:

We have two real numbers J and h, called coupling constant and strength
of the external field, respectively.

ΣN = {−1,+1}N ; HN (σ) =
J

2

(
N∑
1

σi

)2

+ h
N∑
1

σi

When J > 0, this model is called ferro-magnetic.
Curie-Weiss Potts model:

We have a real number J , an integer q > 1, S = {1, 2, · · · , q}, and h is a map
from S to R.

ΣN = SN ; HN (σ) =
J

2

N∑
i,j=1

Iσi=σj +
N∑

i=1

h(σi)

Here Iσi=σj
is one or zero according as σi = σj or not.

Curie-Weiss Clock model:

The numbers J and q are as above. Now S is the set of q-th roots of unity,
h is a function from S to R.

ΣN = SN ; HN (σ) =
J

2

N∑
i,j=1

σiσj +
N∑

i=1

h(σi)

Heisenberg Model:

As earlier J is a real number. Now S is the surface of the (r+1)-dimensional
unit ball; h is a nice map from S to R.

ΣN = SN ; HN (σ) =
J

2

N∑
i,j=1

σi · σj +
N∑

i=1

h(σi)

(what if r = 0?) Here σi · σj is their inner product.
Derrida’s Random Energy Model:

Here ΣN = {−1,+1}N and HN (σ) are independent centered Gaussian ran-
dom variables with variance N . This is also called Gaussian REM.

Derrida’s Generalized Random Energy Model:

We fix an integer n ≥ 1, called the level of the GREM. We have numbers
ai for 1 ≤ i ≤ n, called weights. For each N , we have positive integers k(i,N)
for 1 ≤ i ≤ n adding upto N . Clearly, ΣN = {−1,+1}N =

∏
i{−1,+1}k(i,N).

With such a representation, σ ∈ ΣN is thought of as (σ1σ2 · · ·σn). It is assumed
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that for each i the limit, lim
N

k(i, N)/N exists and is strictly positive. For σ1 ∈

{−1,+1}k(1,N) we have a random variable ξσ1 , for each σ1σ2 ∈ {−1,+1}k(1,N)×
{−1,+1}k(2,N) we have a random variable ξσ1σ2 , and so on, finally we have
ξσ1σ2···σn

. All these are centered Gaussian with variance N . More important is
that these are all independent.

ΣN = {−1,+1}N =
∏

i

{−1,+1}k(i,N); HN (σ1σ2 · · ·σn) =
n∑

i=1

aiξσ1σ2···σi

This is also called Gaussian GREM.
SK Model:

SK stands for Sherrington and Kirkpatrick. For 1 ≤ i < j ≤ N we have
centered Gaussian variable Jij with variance N . These are all independent.

ΣN = {−1,+1}N ; HN (σ) =
1
N

∑
1≤i<j≤N

Jijσiσj .

This is also called Gaussian SK model. Sometimes it is convenient to express
HN = 1√

N

∑
1≤i<j≤N

ξijσiσj where the ξ are independent standard normals.

Hopfield Model:

We have an integer p ≥ 1, we have independent random variables ξµ
i for

1 ≤ µ ≤ p and 1 ≤ i ≤ N . We put for i 6= j, Jij = 1
N

p∑
µ=1

ξµ
i ξµ

j .

ΣN = {−1,+1}N ; HN (σ) = −1
2

∑
i 6=j

Jijσiσj

Viana-Bray Model:

We have a number α > 0, have a random variable ξ which is Poisson
with parameter αN , have a sequence (Jµ) of i.i.d. symmetric random vari-
ables, have sequences iµ and jµ i.i.d random variables uniformly distributed
over {1, 2, · · · , N}. ALL these random variables are independent.

ΣN = {−1,+1}N ; HN (σ) = −
ξ∑

µ=1

Jµσiµσjµ .

Curie-Weiss Spin glass model:

This is just Hopfield model with p = 1.
There are several other models. Bethe lattice Model (for the N particle

system) has the spins living on a random graph with connectivity constraints.
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For example one can take the set of all graphs on N vertices with zN edges
equipped with uniform probability; or graph on N vertices where i and j are
connected with probability z/(N −1). Here z is an appropriate parameter. The
idea is that as N →∞ the distribution of the coordination number is Poisson(z),
that is for large N , the total number of links is Nz. Hamiltonian is

∑
Jijσiσj

where the J are independent centered Gaussian with variance z−1/2 and the sum
is over all edges in the graph. Thus only spins connected by an edge interact.
In Edwards-Anderson Model the spins live on d-dimensional integer lattice, only
nearest neighbours interact and the interaction variables are centered Gaussian
with variance d−1/2. In Large Range Edwards-Anderson Model the spins live on
d-dimensional integer lattice, only spins at distance less than R interact and the
interaction variables are centered Gaussian with variance R−d/2.

Remark: See Derrida [23, 24, 25], Ligget etal [42], Parisi [45], Guerra etal
[35].

3. Free Energy:

3.1 REM

Definition: A sequence of probabilities (µn) on a polish space X is said to
satisfy Large Deviation Principle with rate funcion I if

(i) I : X → [0,∞] is not identically infinity and is such that for each a < ∞,
the set (x : I(x) ≤ a) is a compact set ;

(ii) for every closed set F , lim sup 1
n log µn(F ) ≤ − inf

x∈F
I(x) and for every

open set G, lim inf 1
n log µn(G) ≥ − inf

x∈G
I(x).

There are several reasons why this notion is important. Here is one.
Theorem 1 (Varadhan’s Lemma):
If (µn) ∼ LDP (I) and h is a bounded continuous function on X, then

1
n log

∫
e−nh(x)dµn(x) → − inf{h(x) + I(x)}.

Here is one way to get the rate function.
Theorem 2 (Getting rates):
Let (µn) be a sequence of probabilities on a polish space X, all supported

on a fixed compact set. Let A be a countable open base for the topology of
X. Assume that for each A ∈ A the limit, lim 1

n log µn(A) exists and equals,
say −L(A), where 0 ≤ L(A) ≤ ∞. Set, I(x) = sup{L(A) : x ∈ A ∈ A}. Then
(µn) ∼ LDP (I).

Why are we interested in this? Now let us return to REM. For each N ,
we have 2N many i.i.d random variables HN (σ) Gaussian with mean zero and
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variance N and ZN =
∑
σ

e−βHN (σ). Just to recap, here the summation is

over all σ ∈ 2N , space of sequences of +1 and -1 of length N , which is the
configuration space of the N -particle system. We are interested in showing the
existence of the limit, lim

N

1
N log ZN and calculating it. For fixed ω define the

map σ 7→ 1
N HN (σ)(ω) from ΣN to R. Let µN (ω) be the induced probability on

R when ΣN has uniform probability.
Put Ψ = {x ∈ R : x2 ≤ 2 log 2}. Define I(x) = x2/2 for x ∈ Ψ and ∞ for x

not in Ψ.
Theorem 3 (REM large deviation rate):
For almost every sample point ω, the sequence of probabilities (µN (ω)) sat-

isfies LDP(I).
This combined with Varadhan’s lemma leads immediately to the following.
Theorem 4 (REM energy):
Consider REM where for the N -particle system the Hamiltonians in different

configurations are independent centered gaussian with variance N . Let ZN (β)
be the partition function. Then lim 1

N log ZN (β) exists almost surely and equals
log 2 + 1

2β2 for 0 ≤ β ≤
√

2 log 2 and equals β
√

2 log 2 for β >
√

2 log 2.
In situation as above, one says that there is phase transition at the critical

value βc =
√

2 log 2. Note that for small β the limit is quadratic in β where as for
large β it is linear. If p(β) denotes the above limit, then a uniform integrability
argument leads to the following.

Theorem 5 (REM Energy, Lp-convergence):
For any β, 1

N log ZN (β) converges almost surely as well as in LP (1 ≤ p < ∞)
to the nonrandom value p(β) above.

Proof of Theorem 1:

It is convenient to use the notation I(A) for infimum of I over the set A.
First we claim that lim inf 1

n log
∫

e−nhdµ ≥ sup{−h(x) − I(x)}. So fix x0

and ε > 0. Take an open ball G around x0 in which h(x) < h(x0) + ε. Since∫
X
≥
∫

G
, the required liminf is at least −h(x0)− ε− I(G) ≥ −h(x0)− I(x0)− ε.

True for every ε > 0 and every x0, we are done.
Now we claim that lim sup 1

n log
∫

e−nhdµ ≤ sup{−h(x) − I(x)} = Λ, say.
No loss to assume that Λ < ∞. Fix M > 0 so that h ≥ −M . Fix a > 0 so that
M − a < Λ. Fix ε > 0. Define the compact set K = {x : I(x) ≤ a}. Recall that
h is continuous and for each b, the set (I > b) is an open set. For each x ∈ K,
fix an open ball Gx centered at x, through out which h is at least h(x)− ε and
I is at least I(x)− ε. Let Bx be the open ball centered at x and radius half that
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of Gx. These balls cover K. Take a finite subcover, say (Bi), with Bi centered
at xi. Set Fi to be closure of Bi and F to be the complement of ∪Bi. For any i,

lim sup
1
n

log
∫

Fi

e−nhdµn ≤ −h(xi) + ε− I(Fi) ≤ −h(xi)− I(xi) + 2ε ≤ Λ + 2ε

This is true for each Fi. Moreover F being a subset of Kc, I(F ) ≥ a and hence

lim sup
1
n

log
∫

F

e−nhdµn ≤ M − I(F ) ≤ M − a ≤ Λ

Observe that the integrand being non-negative,
∫

X
≤
∑∫

Fi
+
∫

F
. Now to com-

plete the proof, use the fact that lim sup
n

1
n log

∑
i

ain ≤ max
i

lim sup
n

1
n log ain.

This last fact can be proved as follows. Let Mn = max
1≤i≤k

ain. Then 1
n log Mn ≤

1
n log

∑
i

ain ≤ 1
n [log k+log MN ]. Since lim sup

n

1
n log Mn = max

i
lim sup

n

1
n log ain,

we are done.
Proof of Theorem 2:

Clearly I maps X to [0,∞]. If I(x0) > a, then there is A ∈ A such that
x0 ∈ A and L(A) > a. In particular, at all points of A, I value is larger than
a. So the set (I ≤ a) is a closed set. If K is the compact set on which all the
probabilities are supported, then clearly, (I < ∞) ⊂ K. This shows that for
any a < ∞, the set (I ≤ a) is a compact set.

Let G be any open set. Need to show that lim inf 1
n log µn(G) ≥ −I(G). Pick

x ∈ G and A ∈ A with x ∈ A ⊂ G. lim inf 1
n log µn(G) ≥ lim inf 1

n log µn(A) =
−L(A) ≥ −I(x). This being true for every x ∈ G we have lim inf 1

n log µn(G) ≥
sup
x∈G

{−I(x)} = −I(G).

Let F be any closed set. Shall show lim sup 1
n log µn(F ) ≤ −I(F ). If F does

not intersect K, the compact set on which all the probabilities are supported,
then both sides are −∞. So need to consider the case when F has points of K.
In this case clearly, the left side of the inequality remains unaltered when F is
replaced by F ∩K. Right side also remains unaltered because I being infinity
outside K, the infimum of I over F is same as that over F ∩ K. Thus safely
assume that F is a compact set.

Temporarily assume that for all x ∈ F , I(x) < ∞. Fix ε > 0. For
each x ∈ F , pick A(x) ∈ A such that x ∈ A(x) and I(x) ≤ L(A(x)) + ε.
These sets cover F , get a finite subcover (A(xi)). Now lim sup 1

n log µn(F ) ≤
lim sup 1

n log
∑

µn(A(xi)) ≤ max
i
{−L(A(xi))} ≤ max

i
{−I(xi)} + ε ≤

sup
x∈F

{−I(x)} + ε giving the desired result.
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To remove the condition that I is finite on F , proceed as follows. Fix M > 0
and set IM as minimum of I and M so that for any x, I(x) ≥ IM (x). Proceed
as above with I replacing IM to conclude that lim sup 1

n log µn(F ) ≤ −IM (F ).
This is true for every M > 0 and as M increases, IM (F ) increases to I(F )
completing the proof.

Proof of Theorem 3:

Since, all the HN (σ) have the same distribution, we let HN stand for a
random variable with this distribution. Fix an interval J = (a, b) and put
qN = P ( 1

N HN ∈ J). Let m = inf
J
|x| and M = sup

J
|x|. Clearly J ⊂ [−M,−m]∪

[m,M ]. If M = ∞ make these intervals open at ∓M .

qN =
∫ √

Nb

√
Na

1√
2π

e−x2/2dx ≤ 2√
2π

∫ ∞

√
Nm

e−x2/2dx ≤ 1√
Nm

e−Nm2/2.

If m = 0, take this bound as one. If 0 < δ < M −m, then

qN ≥
∫ √

N(m+δ)

√
Nm

1√
2π

e−x2/2dx ≥ 1√
2π

√
Nδe−N(m+δ)2/2.

Claim 1: If [a, b] ∩ Ψ = ∅, then for almost every sample point ω we have
eventually µN (a, b) = 0.

Indeed if m and M are the min and max (in modulus) of the interval [a, b]
then hypothesis and the fact that Ψ is a symmetric interval imply that m2 >

2 log 2. In particular m 6= 0. The probability that one of the points HN/N is in
(a, b) is at most 2N 1√

N m
e−Nm2/2 = 1√

N m
e−

N
2 (m2−2 log 2) which is summable

over N and Borel-Cantelli completes the proof.
Claim 2: If (a, b) contains a point x with x2 < 2 log 2, then for almost every

sample point ω we have eventually the following: for any ε > 0; (1 − ε)qN ≤
µN (a, b) ≤ (1 + ε)qN .

Pick x as in the hypothesis and m be as earlier. Since x and −x are in Ψ
and m ≤ |x|, we conclude that m2 < 2 log 2. Fix δ such that (m + δ)2 < 2 log 2
and 0 < δ < M −m. Recall that µN (a, b) = 1

2N

∑
σ

I(a,b)(
HN (σ)

N ). Denoting by

E expectation w.r.t. ω, we have

E{µN (a, b)} = qN

V ar{µN (a, b)} = E
1

22N

∑
σ,τ

I(a,b)(
HN (σ)

N
)I(a,b)(

HN (τ)
N

)− q2
N ≤ qN

2N
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where the last inequality is arrived at after cancelling the σ 6= τ terms of the
first sum with the second term. As a consequence, chebyshev gives

P [|µN (a, b)− qN | > εqN ] ≤ ε−22−Nq−1
N ≤ ε−2 2

δ
e−N [log 2− (m+δ)2

2 ].

Since the last expression is summable over N , Borel-Cantelli completes the proof
of claim 2.

To complete the proof of the theorem, let A denote the collection of all
open intervals (a, b) such that a and b are either rational or ±∞, but different
from the two points −

√
2 log 2 and +

√
2 log 2. This family forms a base for the

topology of the real line. If A ∈ A and closure of A is disjoint with Ψ then claim
1 shows that lim 1

N log µN (A) exists and equals −∞. If |x| >
√

2 log 2, then we
clearly have sets A as above containing the point x and so for such points x,
we have sup

x∈A∈A
L(A) = ∞. Now consider a point x with x2 ≤ 2 log 2. Take any

set A ∈ A with x ∈ A. Then hypothesis of claim 2 holds for the interval A and
hence, for any fixed ε > 0, its conclusion holds. The bounds obtained for qN at
the beginning of the proof show that limN

1
N log qN exists and equals −m2/2.

As a consequence, lim 1
N log µN (A) exists and equals −m2/2. It is now easy

to see that, sup
x∈A∈A

L(A) = x2/2. This is so for all points x with x2 ≤ 2 log 2.

All this happens for almost every sample point ω (Remember µN is random)
because A is a countable family. Theorem 2 applies completing the proof.

Proof of Theorem 4:

Use Varadhan’s lemma for the sequence (µn(ω)) and the function −βx along
with the above theorem to conclude that for almost every sample point the
required limit exists and equals log 2 + sup{βx − 1

2x2 : x2 ≤ 2 log 2}. We add
log 2 because ZN is the sum of all the Gibbs factors, not their average. The
required sup is same as sup of βx− 1

2x2 over 0 ≤ x ≤
√

2 log 2. If β ≤
√

2 log 2
then this sup is attained at x = β and the value of the sup is 1

2β2. However if
β ≥

√
2 log 2, then this sup is attained at

√
2 log 2 with value β

√
2 log 2− log 2.

Proof of Theorem 5:

We show that the family ( 1
N log ZN ) is Lp bounded. First observe that if

−ξσ for σ ∈ 2N are i.i.d. standard normal, then the Hamiltonian HN (σ) =
−
√

Nξ(σ). If MN denotes the max of the 2N standard normals ξσ, then clearly
βMN/

√
N ≤ 1

N log ZN ≤ log 2 + βMN/
√

N. As a consequence we need to show
that the sequence (MN/

√
N) is Lp bounded. Fix 1 ≤ p < ∞.

E

[(
MN√

N

)p

IMN >0

]
=
∫ ∞

0

P

(
MN√

N
> x1/p

)
dx
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P (MN >
√

Nx1/p) ≤ 2N

∫ ∞

√
Nx1/p

1√
2π

e−t2/2dt ≤ C x−1/p e−N [ 12 x2/p−log 2]

Let a = (4 log 2)p/2 so that if x > a, then 1
2x2/p − log 2 > 1

4x2/p. Thus

E

[(
MN√

N

)p

IMN >0

]
≤ a + C

∫ ∞

a

x−1/pe−
1
4 x2/p

dx

which is a finite number not depending on N . Also∫ ∞

0

P
(
MN < −

√
Nx1/p

)
dx ≤

∫ ∞

0

P (ξ >
√

Nx1/p)dx

which is at most
1 +

∫ ∞

1

1√
2π
√

Nx1/p
e−

1
2 Nx2/p

dx

showing that E
[(

MN√
N

)p

IMN <0

]
is also bounded in N . This completes the proof

of uniform integrability.
Remarks:

1. In the definition of rate function, usually one only demands that for each
a, the set {x : I(x) ≤ a} is a closed set, in other words, that I is lower semi-
continuous. Rate functions for which these sets are compact are called good rate
functions.

2. If in the definition of LDP, the inequality required for all closed sets
is demanded only for compact sets (the inequality for open sets is, of course,
demanded for all open sets) then one says weak LDP holds.

3. In the definition of LDP, there are several indexings used, like n, ε, t, and
normalizations 1

n , an or aε etc. We have used n and 1/n. It all depends on how
our probabilities are indexed and the normalization needed.

4. There is no need to use the same function h for all n in Varadhan’s lemma,
we can have hn but with some extra conditions.

5. There is no need to assume that all the µn are supported on a fixed
compact set in Theorem 2. One can assume exponential tightness etc.

6. Discuss Theorem 2, when µn has mass 1/2 at n and 1/2 at zero.
7. We discussed REM only with Gaussian distributions, one could use other

distributions too.
8. For LDP see Varadhan [60, 61] and Dembo etal [22]. Its use in statistical

mechanics was systematically explored by Ellis [29], Eisele [28]. For the energy
of REM and its fluctuations see Olivieri etal [43], Dorlas etal [27], Jana [36, 37],
Galves etal [31], Talagrand [59], Derrida [23] and Ben Arous etal [2].
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3.2 GREM:

In REM, the Hamiltonians in distinct configurations are independent. The
idea in generalized random energy model (GREM) is to bring an amount of
dependence in the structure of the Hamiltonians. Of course, very little can be
achieved by assuming an arbitrary covariance matrix. An n-level tree structure
was suggested by Derrida, where the branches of the tree are in correspondence
with the configuration space. We first recall GREM.

Fix an integer n ≥ 1. This will be called the level of the GREM. Let N ≥ n

be the number of particles, each of which can have two states/spins −1,+1; so
that the configuration space is {−1,+1}N , denoted as 2N . Consider integers
k(i,N) for 1 ≤ i ≤ n such that each k(i, N) ≥ 1 and

∑
i

k(i, N) = N . The

configuration space 2N , naturally splits into product,
∏

2k(i,N) and σ ∈ 2N can
be written as σ1σ2 · · ·σn with σi ∈ 2k(i,N). An obvious tree structure can be
brought in the configuration space. Imagine an n-level rooted tree. There are
2k(1,N) nodes at the first level. These will be denoted as σ1, for σ1 ∈ 2k(1,N).
Below each of the first level nodes there are 2k(2,N) nodes at the second level.
The second level nodes below σ1 of the first level will be denoted by σ1σ2 for
σ2 ∈ 2k(2,N). In general, below a node σ1σ2 · · ·σi−1 of the (i− 1)-th level, there
are 2k(i,N) nodes at the i-th level denoted by σ1σ2 · · ·σi−1σi for σi ∈ 2k(i,N).
Thus a typical branch of the tree reads like σ1σ2 · · ·σn. Obviously the branches
are in one-to-one correspondence with 2N , the configuration space. At the edge
ending with node σ1 · · ·σi, we place a random variables ξσ1···σi

. We assume that
all these random variables are i.i.d. centered Gaussian with variance N . We
associate one weight for each level, say weight ai > 0 for the i-th level. It is
assumed tht

∑
i

a2
i = 1. These are not random. In a configuration σ = σ1 · · ·σn

the Hamiltonian is

HN (σ) =
n∑

i=1

aiξσ1···σi
.

For β > 0 the partition function is

ZN (β) =
∑

σ

e−βHN (σ).

Since ξ’s are random variables both HN and ZN are random variables. We
suppress the parameter ω. As usual 1

N log ZN (β) is the free energy of the N -
particle system.

As in the case of REM, the random probabilities µN are defined on Rn by

12



transporting the uniform distribution of 2N = 2k(1,N) × · · · × 2k(n,N) to Rn via
the map

σ 7→
(

ξσ1(ω)
N

,
ξσ1σ2(ω)

N
, · · · , ξσ1···σn

(ω)
N

)
.

It is easy to see that µN ⇒ δ0 a.s. as N → ∞. Here δ0 is the point mass
at the zero vector of Rn. We assume from now on that k(i,N)

N → pi > 0 for
1 ≤ i ≤ n. Let

Ψ = {x̃ ∈ Rn :
k∑

i=1

x2
i ≤

k∑
i=1

2pi log 2, 1 ≤ k ≤ n}.

We define the map I : Rn → R, by I(x̃) = 1
2

n∑
i=1

x2
i if x̃ ∈ Ψ and = ∞

otherwise.
Theorem 6 (GREM large deviation rate):
For almost every sample point, the (random) sequence {µN} satisfies LDP

with rate function I.
Theorem 7 (GREM Energy):
There are numbers 0 < β1 < · · · < βK < ∞ = βK+1 and numbers 0 < r1 <

· · · < rK = n such that almost surely,

lim
N

1
N log ZN (β) = log 2 + β2

2

∑n
i=1 a2

i if β < β1

= log 2 + β2

2

∑n
i=1 a2

i − 1
2

∑j
l=1(βl − β)2

∑rl

rl−1+1 a2
i

if βj ≤ β < βj+1.

The exact computation of the numbers βj is in the proof of the Theorem.
Two simple cases are worth mentioning. The numbers βj mentioned below are
same as the above, in these particular cases.

Theorem 8 (GREM Energy, Special Cases):

i) Let 0 < p1
a2
1

< p2
a2
2

< · · · < pn

a2
n
. Put βj =

√
2pj log 2

aj
for j = 1, · · · , n. Then

a.s.

lim
N

1
N log ZN (β) = log 2 + β2

2 if β < β1,

=
n∑

j+1

pi log 2 + β
j∑
1

ai

√
2pi log 2 + β2

2

n∑
j+1

a2
i

if βj ≤ β < βj+1 for 1 ≤ j < n,

= β
n∑
1

ai

√
2pi log 2 if β ≥ βn.

13



ii) Let p1
a2
1

= p2
a2
2

= · · · = pn

a2
n

> 0. Then a.s.

lim
N

1
N log ZN (β) = log 2 + β2

2 if β <
√

2 log 2

= β
√

2 log 2 if β ≥
√

2 log 2.

Note that in case i) above all the n levels of the GREM showed up in the
formula for the energy where as in case ii) all the levels reduced to just one
level, leading to REM situation. Let us denote by p(β) the non-random limit in
Theorem 7.

Theorem 9 (GREM Energy, Lp-convergence):
For any β, 1

N log ZN (β) converges almost surely as well as in LP (1 ≤ p < ∞)
to the nonrandom value p(β) above.

Proof of Theorem 6:

The proof is similar to that of Theorem 3. Here are the main steps. Let
J = J1 × · · · × Jn, where each Ji is an interval of R. Put mi = infx∈Ji

|x|,
Mi = supx∈Ji

|x|, and qiN = P ( ξ
N ∈ Ji) we have

qiN ≤ 2√
2π

∫ √
NMi

√
Nmi

e−
x2
2 dx <

∫ ∞

√
Nmi

e−
x2
2 dx ≤ 1√

Nmi

e−
Nm2

i
2 ,

with the understanding that when mi = 0, the last expression is 1
2 and

qiN ≥ 1√
2π

∫ √
NMi

√
Nmi

e−
x2
2 dx >

1
2

∫ √
N(mi+δ)

√
Nmi

e−
x2
2 dx >

√
Nδ

2
e−

N
2 (mi+δ)2 ,

for any 0 < δ < Mi −mi.
Firstly, one shows that if J̄ ∩ Ψ = ∅, then a.s. eventually µN (J) = 0.

Moreover, the sequence {µN} is supported on a compact set.
Secondly, if (J̄ ∩Ψ)0 6= ∅, then for any ε > 0 a.s. eventually

(1− ε)q1N · · · qnN ≤ µN (J) ≤ (1 + ε)q1N · · · qnN .

Finally, one shows that almost surely

lim
N→∞

1
N log µN (J) = − 1

2

∑n
i=1 m2

i if (J̄ ∩Ψ)0 6= φ

= −∞ if J̄ ∩Ψ = φ.

This completes a sketch of a proof of the theorem.
Proof of theorem 7:
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The free energy is given by

lim
N

1
N

log ZN (β) = log 2 +
β2

2

n∑
i=1

a2
i −

1
2

inf
x̃∈Ψ+

n∑
i=1

(xi − βai)2

where Ψ+ consists of points of Ψ with all coordinates non-negative.
Here is the general idea. Let c1, c2, · · · , cn ≥ 0 with c1 > 0. Let α̃ =

(α1, · · · , αn) ∈ Rn with each αi > 0. Let S ⊂ Rn be the set of all points
x̃ = (x1, · · · , xn) ∈ Rn with nonnegative coordinates and

∑i
1 x2

j ≤
∑i

1 cj for
i = 1, 2, · · · , n. Here then is the formula for l = inf x̃∈S

∑n
1 (xi − αi)2.

i) If c1+···+ci

α2
1+···+α2

i

≥ 1 for all i then clearly α̃ ∈ S and l = 0.

ii) Let γ = min
i

c1+···+ci

α2
1+···+α2

i

. Let k be the largest index such that γ = c1+···+ck

α2
1+···+α2

k

.

Assume that ck+1+···+ci

α2
k+1+···+α2

i

≥ 1, for i > k. Put α̃∗ = (α∗1, · · · , α∗n) where

α∗i =
√

γαi for i ≤ k

= αi for i > k.

Clearly α̃∗ ∈ S. Moreover the infimum, l =
∑k

1(α∗i − αi)2 = (1 −√
γ)2
∑k

1 α2
i .

To see this, consider any x̃ ∈ S. By Cauchy-Schwarz,
∑k

1 α∗i xi ≤
∑k

1 α∗i
2 and

hence
∑k

1 α∗i (α
∗
i − xi) ≥ 0. Since γ < 1,

∑k
1 α∗i (α

∗
i − xi) ≤

∑k
1 αi(α∗i − xi). A

simple algebra shows

k∑
1

(xi − αi)2 −
k∑
1

(α∗i − αi)2 ≥
k∑
1

(xi − α∗i )
2 ≥ 0. (∗)

iii) Let γ and k be as above. Suppose ck+1+···+ci

α2
k+1+···+α2

i

< 1, for some i > k. Put

η = min
i>k

ck+1+···+ci

α2
k+1+···+α2

i

, so that η < 1. Let m be the largest index when this ratio

equals η. Clearly m > k. Assume that cm+1+···+ci

α2
m+1+···+α2

i

≥ 1, for i > m. Put

α∗i =
√

γαi for i ≤ k

=
√

ηαi for k + 1 ≤ i ≤ m

= αi for i > m.

Clearly α̃∗ ∈ S. Further, the infimum, l =
∑m

1 (α∗i − αi)2 = (1−√γ)2
∑k

1 α2
i +

(1−√η)2
∑m

k+1 α2
i . To see this, consider any point x̃ ∈ S. It is enough to show

(∗) with k replaced by m. As earlier
∑k

1 α∗i (α
∗
i − xi) ≥ 0 and

∑m
1 α∗i (α

∗
i −

xi) ≥ 0. Using γ < η < 1, we have
∑m

1 α∗i (α
∗
i − xi) ≤ 1√

η

∑m
1 α∗i (α

∗
i − xi) ≤

1√
η

∑m
1 α∗i (α

∗
i−xi)+( 1√

γ−
1√
η )
∑k

1 α∗i (α
∗
i−xi). In other words,

∑m
1 αi(α∗i−xi) ≥∑m

1 α∗i (α
∗
i −xi). A simple algebra completes proof of (∗) with k replaced by m.
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We shall not continue with the generalities, instead we explain this in our
situation, namely, S = Ψ+, αi = βai and ci = pi log 2.

Following the above analysis, let us put Bj,k =
√

(pj+···+pk)2 log 2

a2
j
+···+a2

k

for 1 ≤

j ≤ k ≤ n. Set

β1 = mink B1,k r1 = max{i : B1,i = β1}
β2 = mink>r1 Br1+1,k r2 = max{i > r1 : Br1+1,i = β2}

and in general

βm+1 = min
k>rm

Brm+1,k rm = max{i > rm : Brm+1,i = βm+1}.

Clearly, for some K with 1 ≤ K ≤ n, we have rK = n. Put r0 = β0 = 0 and
βK+1 = ∞. Note that β0 < β1 < β2 · · · < βK < βK+1 = ∞.

Fix j ≤ K and let β ∈ (βj , βj+1]. Define x̃∗ ∈ Ψ+ as follows:

x∗i = βlai if i ∈ {rl−1 + 1, · · · , rl} for some l, 1 ≤ l ≤ j

= βai if i > rj + 1.

Then inf x̃∈Ψ

∑n
i=1(xi − βai)2 occurs at x̃∗. This proves the theorem.

Proof of Theorem 8:

For the first part one only needs to see that the hypothesis implies that the
constants β as defined above coincide with the values given in the statement of
the theorem. The formula itself, for the energy, is just a special case of the one
in the earlier theorem. For the second part one only needs to realize that in this
case there is only one βi.

Proof of Theorem 9:

The argument given for REM applies to show uniform integrability in this
set-up as well.

Remarks:

1. It is possible to take, as in the case of REM, distributions other than
Gaussian. In fact it is possible to take different distributions at different levels
of the tree. However, explicit formulae for the energy appear to be difficult.

2. One can give a general tree formulation of the GREM and solve the
resulting model. This allows one to consider random trees as well. For example,
toss an n-faced die N times to decide what should be the numbers k(i,N).
However, no interesting trees that exhibit any behaviour other than expected
have been found. May be there is some universality w.r.t. the trees.
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3. An enirely new formulation in terms of rate functions of the driving
distributions can be given to these models.

4. There are other models akin to GREM that are considered in the litera-
ture.

5. For the energy of GREM see Derrida [24], Derrida etal [25], Dorlas etal
[26], Capocaccia etal [18], Contucci etal [21], Galves etal [31], Jana [37], and
Jana etal [38, 39], Bolthausen etal [9].

3.3 SK Model:

For the SK model, to recap, we have

HN (σ) =
1√
N

∑
1≤i<j≤N

Jijσiσj ; ZN =
∑

σ

e−βHN (σ)

To show the existence of the limit, lim
N

1
N log ZN the method used is called the

smart path method. Roughly speaking, if you have two quantities a and b

computed in two systems and want to show that a ≤ b, one way is to find a
path ϕ(t) for 0 ≤ t ≤ 1, (between the two systems that produced the values
a and b respectively) such that ϕ is increasing; ϕ(0) = a and ϕ(1) = b. Such
a path is definitely a smart path! We need some preliminaries about Gaussian
expectations.

Theorem 10 (integration by parts):
(i) Let X be centered Gaussian and F : R → R be a C1 function such

that both F and its derivative F ′ have exponential growth, that is, for some
constants c and d, |F (x)| ≤ ced|x| and similarly for F ′. Then

E(X · F (X)) = E(X2) · E(F ′(X)).

(ii) Let X, Y1, Y2, · · · , Yn be jointly Gaussian and centered. F : Rn → R be
a C1 function with exponential growth, that is, |F (y)| ≤ cedΣ|yi| and similarly
for its first partial derivatives. Then denoting by Fi the derivative of F w.r.t.
the i-th coordinate, and by Y the vector (Y1, · · · , Yn),

E(X · F (Y )) =
∑

i

E(X · Yi)E(Fi(Y )).

Theorem 11 (Slepian’s Lemma):
Let F : RM → R be a C2 function of exponential growth along with its first

two derivatives. Assume that for i 6= j, ∂2

∂xi∂xj
F ≥ 0. Let U = (U1, · · · , UM )
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and V = (V1, · · · , VM ) be centered Gaussian with E(U2
i ) = E(V 2

i ) for all i, and
E(UiUj) ≥ E(ViVj) for i 6= j. Then E(F (U)) ≥ E(F (V )).

Theorem 12 (Gaussian concentration inequality):
Let F : RM → R be a C2 function such that for some number A > 0, we

have for all x and y; |F (x) − F (y)| ≤ A d(x, y). Let X = (X1, · · · , XM ) where
(Xi) are independent standard normal. Then for any t > 0,

P{|F (X)− E[F (X)]| ≥ t} ≤ 2e−t2/4A2
.

Here d is the usual Euclidean distance. Results which assert that a random
variable, with high probability, takes values near a number (mean, median) are
called concentration inequalities.

Theorem 13 (Concentration inequality for SK model):
Consider the SK model with inverse temperature β. Let us denote pN (β) =

1
N E log ZN (β). Then for any t > 0,

P{| 1
N

log ZN − pN | ≥ t} ≤ 2e−Nt2/2β2
.

Inequalities like the above are very useful, they allow us to deduce the almost
sure convergence of the sequence 1

N log ZN from the convergence of their means.
Theorem 14 (SK model, Energy):
The sequence (E[log ZN ]) is a superadditive sequence of numbers. 1

N E[log ZN ]
converges to a finite limit. The sequence 1

N log ZN converges almost surely.
Neither the convergence nor the value of the limit seem to depend on the

Gaussian nature of the environment (a term used to describe the randomness
that enters the Hamiltonian). There is a universal behaviour. Anything reason-
able seems to do.

Theorem 15 (Universality of Energy):
Consider any probability µ on R with mean zero, variance one and finite

third moment. Consider the ‘SK’ Hamiltonian and partition function,

HN (σ) =
∑

1≤i<j≤N

Jijσiσj ; ZN =
∑

σ

e
− β√

N
HN (σ)

where Jij are i.i.d. having distribution µ. Then 1
N log ZN converges almost

surely, 1
N E(log ZN ) converges. Moreover this limit is same as that for the

Gaussian environment.
Proof of Theorem 10:
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Condition on F says required integrals below exist. First part follows by
observing that if EX2 = σ2, then integration by parts gives

E(X · F (X)) =
∫

1√
2πσ

xe−x2/2σ2
F (x)dx = σ2

∫
1√
2πσ

e−x2/2σ2
F ′(x)dx.

For the second part put Zi = Yi − ciX where ci = E(YiX)/E(X2). See
that Z = (Z1, · · · , Zn) is independent of X. Apply earlier part to X and the
function ϕ(x) = F (〈zi + cix〉) for fixed numbers (zi). We get (remember chain
rule for derivative) E(Xϕ(X)) = E(X2)E(ϕ′(X)) =

∑
E(YiX)EX(Fi(〈zi +

ciX〉)). Since Z is independent of X, now taking expectation w.r.t. Z we get
E(XF (Y )) =

∑
E(YiX) E(Fi(Y )).

Proof of Theorem 11:

There is no loss to assume that the families U and V are independent. Put
W (t) =

√
tU+

√
1− tV and ϕ(t) = E[F (W (t))]. Thus W (t) = (W1(t), · · · ,WM (t))

where Wi(t) =
√

tUi +
√

1− tVi. Under the assumptions of the theorem, we can
interchange expectation with differentiation, yielding ϕ′(t) = E[

∑
W ′

i (t)Fi(W (t))].
Here Fi is the derivative of F w.r.t. its i-th coordinate and W ′

i is the derivative
w.r.t. t of the i-th coordinate of W . Thus W ′

i (t) = 1
2
√

t
Ui − 1

2
√

1−t
Vi. Note

that by independence of the Us and V s, we have E[W ′
i (t)Wj(t)] = 1

2 [E(UiUj)−
E(ViVj)]. By previous theorem

E[W ′
i (t) Fi(W (t))] =

∑
j

E[W ′
i (t) Wj(t)] E[Fij(W (t))].

As a consequence

ϕ′(t) =
1
2

∑
[E(UiUj)− E(ViVj)]E[Fij(W (t))]

By hypothesis, this quantity is positive. Thus E(F (V )) = ϕ(0) ≤ ϕ(1) =
E(F (U)).

Proof of Theorem 12:

Consider R2M and think of a point y = (y1, · · · , y2M ) as (y1, y2) with
y1 = (y1, · · · , yM ) and y2 = (yM+1, · · · , y2M ). Define G on R2M by G(y) =
es[F (y1)−F (y2)] for a fixed number s ∈ R. Let (Ui)1≤i≤2M be independent stan-
dard Gaussian. Fix independent standard gaussian (Vi)1≤i≤M independent of
the U family and also put Vi = Vi−M for M + 1 ≤ i ≤ 2M . Note that
E(UiUj) − E(ViVj) is zero unless |i − j| = M , in which case it is −1. Set
W (t) =

√
tU +

√
1− tV where U and V are the 2M dimensional vectors (Ui)
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and (Vi) respectively. Set ϕ(t) = E[G(W (t))] so that as in the above theorem,
we have

ϕ′(t) =
1
2

∑
i,j

[E(UiUj)− E(ViVj)]E[Fij(W (t))] = −E
∑
i≤M

Gi,i+M (W (t))

where, as usual, the suffixes for F and G denote the corresponding partial
derivatives. Observe that Gi,i+M (y) = −s2Fi(y1)Fi(y2)G(y) so that

ϕ′(t) = s2E[
∑
i≤M

Fi(W 1(t))Fi(W 2(t))G(W (t)]

But for all x ∈ RM our hypothesis tells
∑

i≤M

[Fi(x)]2 ≤ A2 So applying Cauchy-

Schwarz for the F terms above, we get

ϕ′(t) ≤ s2A2ϕ(t).

This combined with ϕ(0) = 1 yields ϕ(1) ≤ es2A2
. In other words, we have

proved that for every s ∈ R, Ees[F (U1)−F (U2)] ≤ es2A2
. Writing this expectation

E as EU1EU2 and performing EU2 with the help of Jensen, we get

Ees[F (U)−E(F (U))] ≤ es2A2

so that
P (F (U)− E[F (U)] ≥ t) ≤ es2A2

/est.

Taking s = t/(2A2) we see that this last quantity is e−t2/(4A2). Apply this to
−F to complete the proof.

Proof of Theorem 13:

Take M = N(N − 1)/2. For σ ∈ ΣN , let a(σ) be the vector of RM given
by (− β√

N
σiσj : 1 ≤ i < j ≤ N). Note that if J is a M dimensional standard

normal vector, then the SK Hamiltonian is nothing but HN (σ) = J · a(σ). If
we consider the function F (x) = 1

N log
∑
σ

ea(σ)·x then F (J) = 1
N log ZN . If we

show that |F (x)−F (y)| ≤ β√
2N

d(x, y), then the previous theorem completes the

proof. But this is clear because, ‖a(σ)‖ ≤ β
√

N/2 and hence |a(σ)·x−a(σ)·y| ≤
β
√

N/2d(x, y). Thus a(σ) ·x ≤ a(σ).y +β
√

N/2 d(x, y) Take exponentials, add
over σ and take log to get F (x) ≤ F (y) + d(x, y) β/

√
2N . Interchange x and y

to complete the proof.
Proof of Theorem 14:

Almost sure convergence of 1
N log ZN follows from the convergence of the

numbers 1
N E(log ZN ) by an application of Theorem 13. But the convergence
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of these numbers, in turn, follows from the super-additivity of the sequence of
numbers E(log ZN ). This will be observed first.

Let (an) be a super-additive sequence of numbers, that is, am+n ≥ am + an

for every m and n. Set s = sup
n

(an/n). Clearly, lim sup(an/n) ≤ s. We shall

show that lim inf(an/n) ≥ s, then it follows that (an/n) converges to s. First
consider the case s < ∞. Fix ε > 0. Fix k such that (ak/k) > s − ε/2. Fix
N > k such that for 1 ≤ r ≤ k, (ar/N) > −ε/2. Now take any n > N . Let
n = kd + r with r < k. Then

an = akd+r ≥ dak + ar ≥ dk(s− ε

2
) + ar

by super additivity and choice of k. Thus

an

n
≥ dk

dk + r

(
s− ε

2

)
+

ar

n
≥
(
s− ε

2

)(
1− r

n

)
− ε

2
,

showing that lim inf(an/n) ≥ s − ε. If s = ∞, we fix M > 0 and need to show
that lim inf(an/n) > M . Fix k as above but with (ak/k) > 2M and proceed.

Of course, in our case s < ∞. Indeed 1
N E(log ZN ) ≤ log 2 + 1

2β2. This is
because by concavity of log function, Jensen yields E(log ZN ) ≤ log E(ZN ) =
log[2NE(e−βX/

√
N )] where X is centered Gaussian with variance N(N − 1)/2.

We now proceed to show that the sequence of numbers {E[log ZN ]} is indeed
super-additive. Fix integers N = N1+N2. Take independent standard standard
normals (Jij) for 1 ≤ i < j ≤ N ; (J ′ij) for 1 ≤ i < j ≤ N1; and (J ′′ij) for
N1 < i < j ≤ N . Set for σ ∈ {−1,+1}N ,

H1(σ) =
1√
N

∑
1≤i<j≤N

Jijσiσj

H2(σ) =
1√
N1

∑
1≤i<j≤N1

J ′ijσiσj +
1√
N2

∑
N1+1≤i<j≤N

J ′′ijσiσj

and for 0 ≤ t ≤ 1

H(t)(σ) =
√

t H1(σ) +
√

1− t H2(σ).

We use the notation of Slepian’s lemma. We take M = 2N ; The family (Uσ)
is the family (H1(σ)); (Vσ) is the family (H2(σ)); and the funcion F (x) =
log
∑
σ

e−βxσ . Then (Wσ) is precisely the family (H(t)(σ)). As a result we have,

denoting ϕ(t) = E[F (W (t))],

ϕ′(t) =
1
2

∑
ση

[E(UσUη)− E(VσVη)] E[Fση(W (t))].
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Here Fση is the derivative of F w.r.t. these variables. In the present case,

E(UσUη) =
1
N

∑
i<j

σiσjηiηj =
1
2
[NR2

ση − 1]

where Rση = (
∑
i

σiηi)/N , called the overlap between σ and η. Note that this

quantity always lies between −1 and +1; it equals one if and only if the two
configurations σ and η are the same. Similarly, keeping the independence of the
families (J ′ij) and (J ′′ij), we get

E(VσVη) =
1
2
[N1(R∗

ση)2 − 1] +
1
2
[N2(R∗∗

ση)2 − 1]

where R∗
ση = (

∑
i≤N1

σiηi)/N1 and R∗∗
ση = (

∑
N1<i≤N

σiηi)/N2.

Since F (x) = log
∑
τ

e−βxτ we have, for its derivatives

Fσ(x) = −βe−βxσ/(Στe−βxτ ) = −βG(σ, x)

where G(σ, x) is the Gibbs measure of σ corresponding to the vector x, namely,
e−βxσ/Z where Z =

∑
τ

e−βxτ .

Fση(x) =
−β2e−βxσe−βxη

(
∑
τ

e−βxτ )2
= −β2G(σ, x)G(η, x) for σ 6= η,

Fσσ(x) =
−β2e−2βxσ

(
∑
τ

e−βxτ )2
+

β2e−βxσ∑
τ

e−βxτ
= −β2G(σ, x)G(σ, x) + β2G(σ, x)

substituting these value in the expression for ϕ′ above, we get 4
β2 ϕ′ equals∑

ση

[NR2
ση −N1R

∗2
ση −N2R

∗∗2
ση + 1]E[−G(σ,Wt)G(η, Wt)] +

∑
σ

E[G(σ,Wt)]

= − 1
N

E

{∑
ση

G(σ,Wt)G(η, Wt)
[
R2

ση −
N1

N
R∗2

ση −
N2

N
R∗∗2

ση

]}
Note that

Rση =
N1

N
R∗

ση +
N2

N
R∗∗

ση

The funcion x 7→ x2 being convex function, we have

R2
ση −

N1

N
R∗2

ση −
N2

N
R∗∗2

ση ≤ 0
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The Gs being positive we conclude from the above expression concerning ϕ′

that ϕ′ ≥ 0. Thus ϕ(0) ≤ ϕ(1). In other words E[log Z2] ≤ E[log Z1] where the
Zi are the partition functions corresponding to the Hamiltonians Hi. It is not
difficult to see that

E[log Z2] = E[log ZN1 ] + E[log ZN2 ] and E[log Z1] = E[log ZN ].

This completes the proof the super-additivity of the sequence of numbers E[log Zn].
Proof of Theorem 15:

Let H1N (σ) =
∑

1≤i<j≤N

Jijσiσj where (Jij) are standard normal. Let H2N (σ) =∑
1≤i<j≤N

J ′ijσiσj where (J ′ij) are i.i.d. mean zero, variance one, finite third mo-

ment variables. Set Z1N =
∑
σ

e−βH1N (σ)/
√

N and Z2N =
∑
σ

e−βH2N (σ)/
√

N . We

need to show that E[ 1
N (log Z1N − log Z2N )] → 0.

Some notational issues are to be addressed first. We set M = N(N − 1)/2.
A vector x ∈ RM is indexed by (ij) with 1 ≤ i < j ≤ N . The indices (ij) are
also ‘arranged’ in some order 1 ≤ l ≤ M when needed. For σ ∈ {−1,+1}N ,
we let σ denote also the vector of RM whose (ij)-th coordinate is σiσj . There
will be no confusion with this dual notation for σ, it will be obvious from the
context as to what is meant. Let J be the M -dimensional random vector whose
(ij)-th coordinate is Jij . Similarly J ′. With this notation, H1N = J · σ and
H2N = J ′ ·σ where the dot denotes the inner product. For 0 ≤ l ≤ M let X l be
the M -dimensional random vector which has Jij variables upto and including
the coordinate l and J ′ij variables after the l-th coordinate. Thus XM is just
J and X0 is J ′. Let F : RM → R be defined by F (x) = 1

N log
∑
σ

e−βx·σ/
√

N

where the dot in the exponent is the inner product. With all this notation, what
we need to show amounts to

E[F (XM )− F (X0)] =
M∑
1

E[F (X l)− F (X l−1)] → 0

Set Y l to be the M -dimensional random vector which is X l in all its coordi-
nates except the l-th coordinate which is set as zero. Thus replacing the l-th
coordinate of Y l by the l-th coordinate of J we get X l, while replacing the l-th
coorinate of Y l by the l-th coordinate of J ′ we get X l−1. Since our function F

is smooth, we have

F (X l)− F (X l−1) = [F (X l)− F (Y l)] − [F (X l−1)− F (Y l)]
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which equals, by Taylor expansion

Fl(Y l)[Jl − J ′l ] +
1
2
Fll(Y l)[J2

l − J ′2l ] +
1
6
[Flll(?)J3

l − Flll(??)J ′3l ]

Here the suffixes for F denote the partial derivative w.r.t. that coordinate. The
question marks denote that Flll is evaluated at an appropriate point in RM , the
actual point is not relevant (enough to note that we have random variables).
Since Y l, Jl, J

′
l are independent and also that Jl and J ′l have zero means and

unit second moments we get, on taking expectations of the above equation,

E[F (X l)− F (X l−1)] =
1
6
E[Flll(?)J3

l − Flll(??)J ′3l ]

Now let us calculate the required derivatives. Let the coordinate l be (ij). Keep
in mind that the partition function corresponding to x is Z(x) =

∑
σ

e−βx·σ/
√

N ,

the Gibbs measure corresponding to x on the σ-space is G(σ, x) = 1
Z(x)e

−βx·σ/
√

N

and for any function f on the σ-space its expectation w.r.t. this probability is
denoted by 〈f〉x.

F (x) =
1
N

log
∑

σ

e−βx·σ/
√

N

Fl(x) =
−β

N3/2

1
Z(x)

∑
σ

e−βx.σ/
√

N σiσj =
−β

N3/2
〈σiσj〉x

Fll(x) =
β2

N2

 (
∑
σ

e−βx.σ/
√

N σiσj)2

Z2(x)
−

∑
σ

e−βx.σ/
√

N σ2
i σ2

j

Z(x)


=

β2

N2
[(〈σiσj〉x)2 − 1]

Flll(x) =
β2

N5/2

2
∑
σ

e−βx·σ/
√

Nσiσj .
∑
σ

e−βx·σ/
√

N

Z2(x)
−

2(
∑
σ

e−βx·σ/
√

Nσiσj)3

Z3(x)


=

2β2

N5/2

[
〈σiσj〉3x − 〈σiσj〉x

]
≤ C N−5/2

As a consequence E[F (X l)− F (X l−1)] ≤ C N−5/2 and finally

E[F (XM )− F (X0)] ≤ MC N−5/2

Since M = N(N − 1)/2 this last expression converges to zero as n → ∞,
completing the proof.
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Remarks:

1. The overlap that appeared in the proof of theorem 14 plays a prominent
role in understanding SK model.

2. See Talagrand [59] for SK model. Guerra and Toninelli [34] proved the
existence of the limiting energy for the SK model. The identification of the limit
with a conjecture of Parisi was achieved by Guerra [33] and Talagrand [58].

3. The universality was noted in Carmona etal [19] and Chatterjee [20], see
also Talagrand [56]. The proof is an imitation of the Lindeberg proof of the
Central Limit Theorem as given, for example, in Billingsley [7].

4. For β < 1, the limiting energy is log 2 + 1
4β2. See Talagrand [59].

5. We have not included the external field term, but that can also be included
in proving the existence of the limit.

4. Gibbs Distribution:

Let us now turn our attention to another problem, namely, the fate of the
Gibbs distributions. For each N , we have a random probability on {−1,+1}N ,
namely the Gibbs distribution, which is given by G(σ) ∝ e−βHN (σ). More
precisely, it is the probability which puts mass e−βHN (σ)/ZN at the point σ.
This is a random probability, because HN are random. The question is to find
out if there is any limiting object for these. Of course, one has to formulate
carefully, because the space on which these probabilities live changes with N .

Theorem 16 (REM High temperature Gibbs measures):
Consider the Gaussian REM with β <

√
2 log 2. Then almost surely the

Gibbs measures converge to the uniform distribution on the space{−1,+1}∞ in
the following sense. Fix any k. For every N ≥ k and ω, the Gibbs distribution on
{−1,+1}N be denoted by GN (ω, .). Let its marginal on the first k coordinate
space be denoted by Gk

N (ω, .). Then for almost every ω, as n → ∞, these
converge to the uniform distribution on {−1,+1}k.

To discuss the fate of Gibbs measures at low temperatures, we need some
notation. For 0 < m < 1, let Pm be the Poisson Point Process on (0,∞) with
intensity x−m−1dx. This means the following. Say that a subset D ⊂ (0,∞)
is locally finite if for any two numbers a and b with 0 < a < b < ∞, the set
D ∩ [a, b] is a finite set. Clearly, a locally finite set is countable. Let Ω be the
collection of all locally finite sets. For a Borel set B ⊂ (0,∞) let NB be the
‘number map’ defined on Ω by D 7→ |B ∩D|, where |A| is the number of points
in the set A. This map takes non-negative integer values, including possibly
infinity. Let F be the smallest σ-field on Ω making all these maps NB — as B
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varies over Borel sets — measurable. There is a unique probability Pm on F
such that for each Borel B ⊂ (0,∞) the Pm distribution of NB is Poisson with
parameter ν(B) =

∫
B

x−m−1dx and moreover for disjoint Borel sets Bi ⊂ (0,∞)

the random variables NBi
; 1 ≤ i ≤ k are independent. Poisson distribution with

parameter ∞ means mass one at infinity and parameter 0 means mass one at
zero.

Since for each a > 0 we have
∞∫
a

x−m−1dx < ∞, we conclude that almost

every D (under Pm) has only finitely many points larger than a. Thus we can

arrange D as a decreasing sequence. Since
1∫
0

x−m−1dx = ∞ we conclude that

D has infinitely many points and hence, when arranged as decreasing sequence,

it converges to zero. Since
1∫
0

x.x−m−1dx < ∞ the sum of points of D which are

smaller than one is finite. But since there are only finitely many points of D

larger than one, we deduce that the sequence D is summable. Let S ⊂ [0, 1]∞ be
the set of all seqeunces (x1, x2, · · ·) which are decreasing with sum at most one.
Clearly S is a compact set (usual topology, as a subset of the product space).
We define a map from Ω to S as D 7→ (d1

d , d2
d , · · ·) where (di) is decreasing

enumeration of D and d is sum of points of D. Let Λm be the probability induced
on S by Pm via this map. This is called the Poisson-Dirichlet distribution with
parameter m.

Let us now consider REM with β >
√

2 log 2. Put m = β/
√

2 log 2, so
that 0 < m < 1. Arrange the 2N numbers HN (σ)/ZN in decreasing order and
continue with zeros to get a random point of S. Let its distribution be denoted
by µN . Thus µN is the distribution of the Gibbs measures.

Theorem 17 (REM Low temperature Gibbs measures):
Consider the Gaussian REM with β >

√
2 log 2. Denote m = β/

√
2 log 2 and

µN be the distribution of Gibbs measures. Then µN → Λm weakly on S.
Proof of Theorem 16:

If β2 < log 2 then the Gibbs distributions converge almost surely to the
uniform probability on {−1,+1}∞ hereafter denoted 2ω. Let us put Zn =∑
σ

eβ
√

Nξσ where ξσ are independent standard normal. Then

αn = EZN = 2NeNβ2/2

var(ZN ) = E
∑
σ,η

eβ
√

Nξσeβ
√

Nξη −
∑
σ,η

E[eβ
√

Nξσ ]E[eβ
√

Nξη ].
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Cancelling the σ 6= η terms and ignoring the remaining positive terms from the
second sum we get

var(ZN ) ≤
∑

σ

E[e2β
√

Nξσ ] = 2Ne2Nβ2

As a consequence

P

(
|ZN

αN
− 1| > ε

)
≤ 1

ε2
var(ZN/αN ) ≤ 1

ε2
e−N(log 2−β2)

Since the last terms form a convergent series, Borel-Cantelli shows that ZN

αN
→ 1

almost surely. Fix τ ∈ 2k. Then for N > k the projection of the Gibbs
measure GN on 2k puts mass Gk

N (τ) at τ which is described as follows. For
η ∈ 2N−k, let us denote the concatenation of τ followed by η as 〈τη〉 ∈ 2N .
Put Z̃N =

∑
η

eβ
√

Nξ〈τη〉 . Then Gk
N (τ) = Z̃N/ZN . One can repeat the above

argument to show that E[Z̃N ] = 2−kαN and the ratio (Z̃N )/(2−kαN ) converges
to one almost surely. Combining this result with the earlier one for ZN one gets
that, Gk

N (τ) = Z̃N/ZN → 2−k almost surely to complete the proof.
Now let us assume that log 2 ≤ β2 < 2 log 2. The proof is similar to the

above, just that on needs to truncate the Hamiltonians. Recall that HN (σ) =√
Nξσ where ξs are independent standard normal. We shall fix a δ such that

√
2 log 2 < δ < 2β. Put Z ′

N =
∑

σ eβHN (σ)IHN (σ)≤Nδ. Then

P (ZN 6= Z ′
N ) ≤ 2NP (HN > Nδ) ≤ 2N 1√

2π

1√
Nδ

e−δ2N/2 ≤ 1√
Nδ

e−N [ δ2
2 −log 2]

which is summable, so that almost surely eventually, ZN and Z ′
N are equal.

Further

E(Z ′
N ) = 2N

∫ Nδ

−∞

1√
2π

e−
1

2N (x−βN)2dx eNβ2/2 >
1
2
2NeNβ2/2

where we used Nδ > Nβ. Regarding variance, note that var(Z ′
N ) equals

E[
∑
σ,η

eβHN (σ) I(HN (σ)≤Nδ)e
βHN (η)I(HN (η)≤Nδ)]

−
∑
σ,η

E[eβHN (σ)I(HN (σ)≤Nδ)] E[eβHN (η)I(HN (η)≤Nδ)].

Cancel the σ 6= η terms and ignore the others from the second expression, to
get var(Z ′

N ) is at most

2N

∫ Nδ

−∞

1√
2π

e−(x−2βN)2/(2N)dx e2Nβ2
= 2Ne2Nβ2

∫ ∞

N(2β−δ)

1√
2π

e−y2/2dy
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which after usual estimate and simplification, yields

var(Z ′
N ) ≤ 1

N(2β − δ)
2Ne−N( δ2

2 −2βδ)

This leads to

P [|Z ′
N − E(Z ′

N )| ≥ εE(Z ′
N )] ≤ 4

Nε2(2β − δ)
e−N [log 2 + δ2

2 − 2βδ + β2].

If log 2 + δ2

2 − 2βδ + β2 > 0, then the last expression will be summable over N .
We now show that such a choice of δ is possible. Since (2x− y)2 > 2x2− y2, we
have (2β −

√
2 log 2)2 > 2β2 − 2 log 2 so that 2β −

√
2 log 2 >

√
2(β2 − log 2).

Thus 2β −
√

2(β2 − log 2) >
√

2 log 2. Choose δ between these two quantities.
All this shows, via Borel-Cantelli, that almost surely eventually

(1− ε)E(Z ′
N ) ≤ Z ′

N ≤ (1 + ε)E(Z ′
N )

or
(1− ε)E[eβHN I(HN≤Nδ)] ≤

ZN

2N
≤ (1 + ε)E[eβHN I(HN≤Nδ)].

Similarly, fixing a τ ∈ 2k and defining Z̃N as in the earlier para, we see

(1− ε)E[eβHN I(HN≤Nδ)] ≤
Z̃N

2N−k
≤ (1 + ε)E[eβHN I(HN≤Nδ)].

Hence almost surely eventually, Z̃N/ZN lies between 1−ε
1+ε2

−k and 1+ε
1−ε2

−k, show-
ing that Gk

N (τ) → 2−k.
Proof of Theorem 17:

The proof needs a series of steps.
(1o). Suppose that ξN is a centered Gaussian variable with variance N . Put

α2
N =

2
N

log
2N

√
N

= 2 log 2− log N

N
.

Put ηN = ξN + NαN . Let −∞ < a < b ≤ ∞Then

2NP (a < −ηN < b) =
1√
2π

b∫
a

e−t(αN+ t
2N ) dt → 1√

2π

b∫
a

e−t
√

2 log 2 dt.
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This is because,

P (a < −ηN < b) =
b+NαN∫

a+NαN

1√
2πN

e−t2/(2N)dt

=
b∫

a

1√
2πN

e−(t+NαN )2/(2N)dt

=
b∫

a

1√
2πN

e−
t2
2N−tαN e−Nα2

N /2

= 2−N
√

N 1√
2πN

b∫
a

e−
t2
2N−tαN dt

= 2−N 1√
2π

b∫
a

e−t(αN+ t
2N ) dt.

Since

αN +
t

2N
=

√
2 log 2− log N

N
+

t

2N
−→

√
2 log 2

as N → ∞, which proves the claim. This is true even if b = ∞, we only need
a > −∞.

(2o). Consider the REM Hamiltonians HN (σ) which are i.i.d. centered Gaus-
sian with variance N . Set αN as above and H ′

N (σ) = HN (σ) + NαN . Note
that the Gibbs measures are same whether we consider HN or H ′

N . Consider
disjoint intervals Ij = (aj , bj) and non-negative integers nj for 1 ≤ j ≤ k. then

P [−H ′
N (σ) ∈ (aj , bj) for exactly nj values of σ, 1 ≤ j ≤ k] −→

k∏
j=1

e−λj λ
nj

j

nj !

where λj =
bj∫

aj

1√
2π

e−t
√

2 log 2 dt.

This follows from the above and usual multinomial convergence to Pois-
son. This essentially says that the point process {−H ′

N (σ)} converges to the
Poisson Point process with intensity 1√

2π
e−t

√
2 log 2dt. Of course, we have not

defined convergence of point processes. From what was said above it also fol-
lows that if b > 0 and k ≥ 1, given that there are k points of the point process
{−H ′

N (σ)} in (b, ∞) the conditional distribution of their positions (XN
1 , · · ·XN

k )
converges in law to the product of k i.i.d. variables with density proportional
to 1√

2π
e−t

√
2 log 2dt 1(b,∞)(t).

(3o). There is a number c > 0 such that the following happens. Set the Gibbs
factor gN (σ) = ce−βH′

N (σ) and m =
√

2 log 2/β. Note that the Gibbs measures
are same whether we consider the Gibbs factors e−βHN (σ) or e−βH′

N (σ) or gN (σ).

29



Consider disjoint intervals Ij = (aj , bj) ⊂ (0,∞) and non-negative integers nj

for 1 ≤ j ≤ k. then

P (gN (σ) ∈ (aj , bj) for exactly nj values of σ, 1 ≤ j ≤ k) −→
k∏

j=1

e−λj λ
nj

j

nj !

where λj =
bj∫

aj

t−m−1dt.

This essentially says that the point process {gN (σ)} converges to the Poisson
Point process with intensity t−m−1dt.

This follows from the above calculations because,

P (a < gN < b) = P (
1
β

log
a

c
< −H ′

N <
1
β

log
b

c
) =

b∫
a

1√
2π

1
β

cmt−m−1dt.

and choose c so that cm = β
√

2π.
t is worth noting that if we have a Poisson point process on R with intensity

1√
2π

e−t
√

2 log 2dt then the transformation x 7→ ceβx gives us a poisson point
process on (0,∞) with intensity t−m−1dt where m =

√
2 log 2/β.

(4o). For any real number b, let the truncated Gibbs factors gb
N (σ) be de-

fined as e−βH′
N (σ) if −H ′

N (σ) ≥ b and zero otherwise. The truncated partition
function Zb

N is the sum of all the truncated Gibbs factors. Arrange the numbers
gb

N (σ)/Zb
N in decreasing order to get a random point of S and let µb

N be its
distribution.

Consider a Poisson point process with intensity 1√
2π

e−t
√

2 log 2dt on R. For
a Poisson point D = (dn), let the truncated point be defined as Db namely, all
points of D which are ≥ b. Let zb be the sum of all numbers eβd over d ∈ Db and
arrange the numbers eβd/zb (for d ∈ Db) in decreasing order to get a random
point of S and let its distribution be λb.

claim: µb
N ⇒ λb on S.

To see this, take any continuous function on S. If, for k ≥ 0, we denote by
Sk the set of points of S with the exactly the first k coordinates non-zero, then
(2o) tells us that

µb
N (Sk) −→ λb(Sk) k ≥ 0

1
µb

N (Sk)

∫
Sk

fdµb
N −→ 1

λb(Sk)

∫
Sk

fdλb k ≥ 1,
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From these we deduce that∫
S

fdµb
N =

∑
k

∫
Sk

fdµb
N −→

∑
k

∫
Sk

fdλb =
∫
S

fdλb.

(50). Recall that for any real number b, the truncated Gibbs factors gb
N (σ) were

defined as e−βH′
N (σ) if −H ′

N (σ) ≥ b and zero otherwise. The truncated partition
function Zb

N is the sum of all the truncated Gibbs factors.
Fix ε > 0. We can get a number b ∈ R and non-negative integer N0 such

that for all N ≥ N0, P [Zb
N ≥ (1− ε)ZN ] ≥ 1− ε.

This is seen as follows. First fix x such that exp{−
∞∫
x

e−t
√

2 log 2} < ε/2.

Since P (ZN ≤ eβx) ≤ P [|σ : −H ′
N (σ) ≥ x| = 0] and this later quantity con-

verges to exp{−
∞∫
x

e−t
√

2 log 2} we conclude that for all large N , P (ZN ≤ eβx) <

ε/2. Denoting by f the density function of −H ′
N and F its distribution function,

we have for any b,

E[ZN − Zb
N ] = 2N

b∫
−∞

eβxf(x)dx

= 2N [F (b)eβb −
b∫

−∞
βeβxF (x)dx]

= β2N
b∫

−∞
[F (b)− F (x)]eβxdx

≤ β2N
b∫

−∞
[1− F (x)]eβxf(x)dx

≤ β 1√
2παN

b∫
−∞

ex(β−αN )dx

the last inequality follows from

2N [1− F (x)] =
1√
2π

∞∫
x

e−t(αN+ t
2N ) dt ≤ 1√

2π

∞∫
x

e−tαN dt =
1√

2παN

e−αN x

Since β − αN > β −
√

2 log 2 > 0 we can find a number b (negative) such that
E[ZN − Zb

N ] < ε2eβx/2 for all large N . Then P (ZN − Zb
N > εeβx) ≤ ε/2 by

markov inequality. Thus we have a number b and N0 such that for all N ≥ N0

the following hold: P (ZN ≤ eβx) < ε/2 and also P (ZN − Zb
N ≥ εeβx) < ε/2.

These two give P (Zb
N ≥ (1− ε)ZN ) ≥ 1− ε as desired.

(6o). Let zb be as in (4o) and z be the untruncated sum of all the factors
eβd for d ∈ D. Given ε > 0, there is b such that P (zb ≥ (1− ε)z) ≥ 1− ε. This
is clear since zb ↑ z as b ↓ −∞.
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(7o). ∑
σ

|gN (σ)− gb
N (σ)| = 2

ZN − Zb
N

ZN
.

To see this, break the sum into two parts, one over −H ′
N (σ) ≥ b and the

second over the remaining part. The first sum is
∗∑ e−βH′

N (σ)

ZN
− e−βH′

N (σ)

Zb
N

=
∗∑

e−βH′
N (σ)

∣∣∣∣ 1
ZN

− 1
Zb

N

∣∣∣∣ = ZN − Zb
N

ZN
.

The remaining sum is treated similarly.
(8o). Finally, to prove the theorem let f be a continuous function on S.

Shall show that |
∫

fdµN −
∫

fdλ| → 0. First fix a δ > 0 such that x, y ∈ S and∑
|xn − yn| < δ/2 implies |f(x)− f(y)| < ε. Fix b satisfying (5o) and (7o).
Firstly, |

∫
fdµN −

∫
fdµb

N | = E|f(G) − f(Gb)| with the obvious notation.
This expectation over the set |Z − Zb| < δ/2 is at most ε by (7o) and choice of
δ and the expectation over the other part is at most 2||f ||δ by choice of b. This
is so for all n ≥ N0

Secondly, consider |
∫

fdλ−
∫

fdλb| with the obvious notation. This expec-
tation over the set |z − zb| < δ/2 is at most ε by (7o) and choice of δ and the
expectation over the other part is at most 2||f ||δ by choice of b.

Thirdly, |
∫

fdµb
N −

∫
fdλb| goes to zero as N →∞ by (4o).

These three observations complete the proof.
Remarks:

1. For the asymptotics of Gibbs distributions, see Bovier [17], Jana [36],
Talagrand [59] and Galves etal [31].

2. Concerning Theorem 16, since for fixed k we are dealing with probabilities
on a finite set, we could also say convergence holds in the total variation norm.
There are estimates for the total variation distance between the measures Gk

N

and uniform distribution. See Talagrand [59].
3. For the SK model also there are results concerning th convergence of

Gibbs measures at high temperature, that is, for small values of β. However for
large values of β there seem to be none.

4. For GREM also one can find the limiting object of the Gibbs distributions.
Ruelle [49] postulates the limiting object. For proof that these are limiting
objects see Galves etal [31], Bovier etal [16]. The limiting object turns out to
be the Ruelle Cascade. To describe this fix numbers 0 < x1 < x2 < · · · <

xk < 1. Let Nk denote the set of all k-tuples (n1, · · · , nk) of strictly positive
integers. We consider lots (and lots) of independent Poisson processes, all on
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(0, ∞), in what follows. First take one process ξ1
i with intensity t−x1−1dt. Its

points arranged in decreasing order are denoted by (ξ1
n1

). Take for each integer
n, one process ξ2

n with intensity t−x2−1dt and denote its points in decreasing
order by ξ2

n,m and so on. Finally for each (k − 1)-tuple (n1, · · ·nk−1) a process
ξk
n1,···nk−1

with intensity t−xk−1dt and its points denoted by ξk
n1,···nk−1,nk

. Let X

be the point process (ξ1
n1

, ξ2
n1,n2

· · · , ξk
n1,···,nk

). This is called a Ruelle Cascade.
If we have a Ruelle cascade, we first define for any (n1, n2, · · · , nk) the random
point η(n1,n2,···,nk) =

∏
i

ξi
n1,···,ni

. These numbers are summable and the

probability proportional to these numbers gives us a random probability on
Nk. Consider the distribution of this random probability. This is denoted by
λ(x1, · · · , xk). Actually we can define an η-cascade also going backwards as
follows. η(n1,n2,···,nk) was defined already. Put η(n1,n2,···,nk−1) as sum of all the
η(n1,n2,···,nk) over nk and so on. Then we get an η-cascade.

Properly formulated, λ(x1, · · · , xk) turns out to be the limiting object for
the law of the Gibbs distributions. For instance if the set-up is as in Theorem
8(i), with the change in notation that we are considering a k-level grem so that
we have k numbers βi. Then we should consider β > βk and the parameters
of the limiting object λ turn out to be xi = βi/β which are increasing in i. Of
course if the GREM is not in reduced form, more care is needed.

5. What next:

We have only discussed the elementary part of the theory, in a sense, the
soft part. More interesting material comes next. There are several directions in
which one can proceed. But, one should first read Talagrand’s monograph.

1. As mentioned earlier, the overlap is very important and its asymptotics
are thoroughly discussed in Talagrand [59] including several concentration in-
equalities. The recent works of Aizenmann etal [1] and Panchenko etal [65]
should be well understood. See also the papers of Talagrand and Bovier in [8].

2. Koukiou [40] provides a random covering interpretation of the phase
transition in REM and GREM, using an analysis of Shepp[62].

Suppose that µ is a measure on (0,∞) which is finite for compact sets [a, b]
with 0 < a < b < ∞. Let λ be the lebesgue measure on the real line. Consider
a Poisson point process on R×R+ with intensity λ× µ. Given a Poisson point
p = {(xi, li)} let Cp = ∪(xi, xi + li). Say that the real line is covered by the
point p if Cp = R. A theorem of Shepp is that either almost every poisson
point covers the real line or almost no point covers. The first case occurs if
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1∫
0

[
exp

∞∫
x

(y − x)µ(dy)
]

dx = ∞ and the second case occurs if this integral is

finite.
Say that µ gives a low frequency covering if µ restricted to [1,∞) covers R.

That is, the above process with µ replaced by µ′(B) = µ(B ∩ [1,∞)) covers
R. Say that µ gives a high frequency covering of R if µ restricted to (0, 1)
covers. Since the energy levels of REM, properly normalized, converge to a
Poisson point process with intensity mt−m−1dt, one can postulate that REM is
a Poisson point process on (0,∞) with intensity mt−m−1dt where m > 0. it is
not difficult to see that whether the Poisson process with intensity mt−m−1dt

gives a low frequency covering or high frequency covering depends on m > 1
or m < 1. According to the identification of the parameters m corresponds to
√

2 log 2/β. Thus m > 1 and m < 1 correspond to β below or above the critical
value.

For GREM also there is a similar interpretation appears in Koukiou etal
[41].

3. Liggett etal [42] consider the following interesting problem. Suppose we
fix an N and consider the N -particle system with configuration space 2N =
{−1,+1}N and a Hamiltonian HN . Consider the Gibbs probability GN (σ) on
2N . Can it be extended as an exchangeable probability on 2∞? Recall that a
probability on 2∞ is exchangeable, if it is invariant under permutation of finitely
many coordinates. References to earlier work can be found in this paper. Of
course, they consider non-random Hamiltonians.

4. Comets and Neveu [63] and Comets [64] discuss SK model using stochastic
calculus. The idea is to think of β as ‘time parameter’ and replace exponen-
tials with exponential martingales and log by logarithmic martingales. Con-
sider (Bij(t))t≥0 independent standard Brownian motions for 1 ≤ i < j ≤ N .
The Hamiltonian is HN (t, σ) = 1√

N

∑
1≤i<j≤N

Bij(t)σiσj . For each σ this is a

martingale and the Gibbs factors are the exponential martingales eN (t, σ) =
exp{HN (t, σ) − 1

4 t(N − 1)} and partition function is the martingale ZN (t) =

2−N
∑
σ

eN (t, σ). Finally, log ZN (t) is the martingale MN (t) =
t∫
0

1
ZN (s)dZN (s).

This treatment allows not only to find new results but also one can discuss
convergence at the process level.

4. Our entire discussion did not concern any dynamics. It is possible to bring
in dynamics and discuss a phenomenon called aging. See [3, 4] and references
there in. Essentially one considers the nearest neighbour walk on {−1,+1}N .
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From σ you move to η that differs from σ in one coordinates or you stay at σ.
The transition probabilities depend on the Hamiltonian.

5. In REM the limiting distribution of energies is Poisson. This appears
to be a general phenomenon, leading to some universality conjectures. see [6,
14, 15] and references there in. One could also consider Gibbs distributions
restricted to a window. More precisely, consider a set SN ⊂ {−1,+1}N and
look at only the energies corresponding to σ ∈ SN . One could ask for the limit
of this point processes, of course, after proper normalization.

6. A list of references is given below, which is by no means exhaustive, but
will be useful to scan the literature further.
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