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The Punctured Plane
How Topology Governs Analysis

Vishwambhar Pati

All loops in R2 can be continuously shnmk to a point but
there are loops in R2- (0,0) that cannot be; for example, any
circle enclosing the origin. This difference in the 'topology'
ofR2 and that ofR2 - (0,0) results in significant difference

in the 'analysis' on these spaces. The main theme of this
article is to illustrate how topology governs analysis.

Most of you are' probably familiar with analysis, another
name for calculus. At its core are the fundamental concepts
of limits, differentiation and integration of functions on R,
and more generally Rn. What is topology? Perhaps some
of you have studied metric spaces, and continuous maps be-
tween metric spaces. You may be aware that it has to do

with Mobius strips, Klein bottles, doughnuts, knots and the
like.

To make a very crude definition, the objective of topology is
to study continuity in its utmost generality, and to seek the

right setting for this study. The basic objects that topol-
ogy studies are called topological spaces, i.e. sets which have
some additional set theoretic structure, governed by some

. axioms, that enables us to definethe notion of a neighbour-
hood. For example, all the objects listed in the first para-
graph are topological spaces. Once this is done, it is easy to

define continuity of a map, just as one does for metric spaces.
It turns out that to study continuity, it is not really neces-
sary to have a metric. The axioms for topological spaces are
set up so that all our familiar intuitive expectations about
continuity are realised. On the other hand, the general-
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In this article, I hope

to give you a flavour
of how a

topological invariant

called homology

governs the

solvability of a

problem in calculus.
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ity achieved by ridding ourselves of a metric is so powerful
that topology permeates all of mathematics. A continuous

map between topological spaces which has a continuous in-
verse is called a homeomorphism. One would like to classify

topological spaces upto homeomorphism (Le., without dis-
tinguishing spaces which are homeomorphic),- just as one
would like to classify, say, groups upto isomorphism. For
example, a doughnut is homeomorphic to a coffee cup. A
property, such as connectedness, or compactness, which is
preserved under homeomorphism,is called a topologicalin-
variant. In this article, I hope to giveyou a flavourof how a
topological invariant called homology, which we shall define,
governs the solvability of a problem in calculus. For starters,
let us review some several variable calculus.

Statement of the Problem

Let v(x, y) = (p(x, y), q(x, y)) be a smooth vector field on an
open subset X of the Euclidean plane R2, i.e. both p(x, y)
and q(x, y) are defined on X, and infinitely differentiable as
functions on X. Those with a physics background may like
to think of v as an electric field, or the velocity field of a
fluid confined to the planar region X. A natural fundamen-

tal question which arises is whether there exists a potential
function for this vector field. In other words, does there exist

a smooth function </>(x, y) on X such that

8</>

p= 8x '

8</>

q = 8y
(1)

holds identically all over X? This pair of simultaneous dif-

ferential equations is often abbreviated as v = V'</>(read
gradient of </>,or grad </».

Let me give you a quick reason as to why it is useful to
have a potential function. It is easier to perform summation

(and more generally integration) of potentials, which are
scalar valued functions, rather than vector fields. If one
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has, for example, a line of charge, then to find the' electric

field at a point you would have to take field contributions
of 'infinitesimal' bits of the line, take the components along,

say the x-axis, and then integrate. .For the potential, you
do not need to take components, but simply integrate the

potential contributiops. The other reason, which is of more
interest to us here, is the matter of 'work done' in moving

along a smooth path "'(. Let "'( : [0,1] -t X, where "'((t) =
("'(1(t), "'(2(t)) be a smooth function of t E [0,1]. "'( is called a

smooth path joining P = "'((0) to Q = "'((1). The work done

along "'(in the field v is the line integral defined by :

i v = 101 (v("'((t)). ~~) dt

r 1 (
d"'(l d",(2

)= Jo p("'((t))dt + q("'((t))dt dt (2)

where '.' denotes the dot product in R2. Clearly, if a po-

tential function 1> exists on X, satisfying (1), then the line

integral of v along "'( becomes

_ r 1 d1>("'((t)) dt = 1>("'((1))-1>("'((0))
- Jo dt '

= 1>(Q)-1>(P) (3)

by the fundamental theorem of calculus. To sum up, the
work done along a path is just the differen<;eof the values

of the potential function at the end points of the path, and
independent of the path. Thus no line integrals need be
calculated to compute the work done. Also, in particular,

the work done in moving along a smooth loop (Le. a path "'(

satisfying "'((1) = "'((0)) is zero!

Another obvious consequence of the existence of a solution

to (1) is the following: since 1> is to be smooth on the open
set X , one must have

(4)
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Figure 1 The whir pool
vector field.
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all over X. The (also smooth) function * - * is called the
curl of v, and denoted curl v. The discussion above shows

that a necessary condition for (1) to have a solution is that

curl v = 0 identically on X (recall the statement 'curl grad
is zero', from multivariate calculus). So, for example, the
vector field v(x,y) = (xy,xy) on X = R2 has no potential
function since its curl is not identically zero.

It is quite natural to ask whether curl v = 0 is a sufficient

condition for a smooth vector field v on X to have a potential
function satisfyinp; (1). The rest of this note is essentially
devoted to this question.

For a start, let us consider the simplest case X ~ R2. In
this case, the answer turns out to be yes. Indeed, definethe
function 4> by

{X (V
4>(x,y) = Jo p(t,O)dt+Jo q(x,s)ds (5)

That this function satisfies (1) is an easy application of the
fundamental theorems of calculus about integrals of deriva-
tives and derivatives of integrals; we leave it as an exercise.
So now we have a complete answer for a smooth vector field

v on R2, viz. v = V 4> for some smooth function 4> if and only
if curl v = O. This is a particular instance of the Poincare

Lemma for R:. See the book by Singer and Thorpe for the
general statement.

What does topology have to do with all this? To elucidate

this point, let us migrate from X = R2 to the punctured
plane X = R2 - (0,0).

Consider the smooth vector field

(
-y X

)w(x,y)= x2+y2' x2+y2

on R2 - (0,0), which is pictured in Figure 1. Note that this

vector field 'has a singularity at the origin, i.e., there is no
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way of extending this field to a smooth vector field on R2.
You may like to think of it as the surface of an infinite river

with a whirlpool at the origin. It is easy to check that this
vector field is curl free on R2 - (0,0), and we may again ask
whether there is a smooth potential function 4Jdefined on

R2 - (0,0) such that w = '\l4J.If there were, then the earlier
discusSion would imply that its line integral along a loop
in R2 - (0,0) would have to be zero. On the other hand,
a (hopefully empty!) boat drifting around the whirlpool
would certainly go on gaining energy in the counterclock-

wise direction. Let us verify this (without getting into that

boat!). Let ')'(t) = (cos211"t,sin211"t)where t E [0,1], be
the loop going counter-clockwise once around the puncture

(see Figure 1). Then w(-y(t)) = (-sin211"t,cos211"t),qg =
(- 211"sin 211"t,211"cos 211"t), and the line integral of w along ')'
is

h w =~(( - sin 211"t)( - 211"sin 211"t) + (cos 211"t)(211" cos 211"t)) dt

= 211"~1 dt = 211" (6)

which is certainly non-zero. Hence we have a curl free smooth

vector field w on R2 - (0,0) which is not the gradient of any
potential function! Making just one puncture in R2 has

completely changed its analytical nature.

Now I would like to dwell upon the topological characteristic

of R2 - (0,0) which 'causes' this. It is well known that all
loops in R2 can be continuouslyshrunk to a point, but there
are loops in R2 - (0,0) that cannot be continuously shrunk
to a point. To make all this precise, we need a little bit of
'technology' .

Some Planar Topology

Let X denote an open subset of R2. A piecewise smooth path

in X is a map')' : [0,1] --+ X such that (i) ')' is continuous,
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and (ii) there is a subdivision 0 = ao < a1 < ... < ak = 1
of [0,1] such that "( is smooth on each of the sub-intervals
Ij = [aj, aj+1]' "((0) is called the initial point and "((1) the
end point of "(. The inverse path to "( is the path "(-1 defined

by "(-l(t) = "((l-t). We shall now refer to piecewise smooth

paths simply as paths, for brevity. As before, a loop will
mean a path "( whose initial and end points are the same
point x. In this case we say the loop "( is based at x.

If "( and 7 are two paths such that the end point "((1) of "(
is the initial point 7(0) of 7, then one can form the com-

posite path "( * 7 defined by "( * 7(t) = "((2t) for 0 $ t $ !
and = 7(2t - 1) for! $ t $ 1. (This is the reason for in-
troducing piecewise smooth paths, because the composite of

smooth paths need not be a smooth path, but the composite

of piecewise smooth paths is piecewise smooth.) In particu-
lar, we can compose two loops based at the same point.

The constant path Cx at a point x E X is defined by Cx(t) = x

for all t E [0,1]. Henceforth, we shall always assume that

X is a path connected open subset of R2, i.e.. given any two
points P and Q in X, there is a path "( in X with P as its
initial and Q as its end point.

Given a smooth vector field v = (p,q) on X, and a piecewise
smooth path "( in X, we can define the line integral

k-1

1
~

1
aj+l

( d"(l d,,(2

)v = ~ p("((t))- d + q("((t))- dt
-y j=O aj t dt

With this definition, and the standard facts about change

of variables in integration, it is easy to see that I-Y*Tv =
I-yv + IT v and I-y-l v = - I-yv. Also, for the constant path
Cx at x, we have Ie",V = o.

One is now equipped to do some algebra with (piecewise
smooth) loops. Let X be a path-connected open subset of

,42
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R2, as before. I would like to define an equivalence rela-

tion on loops in X as follows. Say that the loops '"'Iand l'
are equivalent (or homologous, or freely homotopic) if there
exists a piecewise smooth map F : [0,1] x [0,1] -> X such

that (i) F(t,O) = '"'I(t), F(t,1) = 1'(t) for all t E [0,1], (ii)
F(O,s) = F(l,s) for all s E [0,1]. Such a map is called a
(free) homotopy. We write '"'Irv l' to denote that '"'Iis equiv-
alent to 1". You should verify that this is an equivalence
relation.

One intuitively thinks of '"'Is = F ( , s) as a continuous one
parameter family of loops evolving from '"'Iat s = 0 to l'

at s = 1. Finally, given a loop '"'Iin X, and an arbitrary
point x EX, there is a loop ;:ywhich is equivalent to '"'I,

and which is based at x. For, take a fixed path a joining

x to y = '"'1(0) = '"'1(1),which is possible by the path con-
nectedness of X. Define;:Y= a * '"'I * a-I. Figure 2 should
enable you to construct a homotopy. Because of this, one

can compose equivalence classes of loops. If '"'Iand l' repre-

sent two equivalence classes, the above remark allows us to

assume without loss of generality that '"'Iand l' are based at

the same point, and we may define '"'I+ l' to be the equiv-

alence class of the loop '"'I* 1'. We will omit the proof that

this operation is well-defined, i.e. that '"'Irv '"'I', l' rv 1" im-

plies '"'I* l' rv '"'I'* 1", though it isn't difficult to prove this,

by 'pasting homotopies'. The notation '+' is meant to in-

dicate that the operation is abelian, and it is not difficult

to show that '"'I * l' and l' * '"'Iare equivalent. If '"'Iis a loop
with '"'1(0)= '"'1(1) = x, you may verify, for example, that
'"'I * Cx rv '"'Irv Cx * '"'I. Also, '"'I* '"'1-1 rv Cx rv '"'1-1* '"'I. Thus, the

equivalence class of the constant loop (at any point) is the

identity element, and the inverse of (the equivalence class
of) '"'I is (the equivalence class of) the loop '"'I-1. For nota-

tional simplicity, we shall denote a loop and its equivalence

class by the same letter, say, '"'I,1', etc.

The abelian group of these equivalence classes of loops in
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X is a very important one, and is called the first homology

group of X, and denoted HI (X). It was essentially invented
by Poincare and Riemann for their study of Riemann sur-
faces.

I claim that the distinction betweenthe Euclidean plane R2

and the punctured plane R2 - (0,0) is detected by the first

homology group. First, let us see that HI (R2) is the trivial

group {O}. This is because the homotopy

F(t, s) = (1- sh(t)

makes any loop..., equivalent to the trivial loop, so there is

only the equivalence class of the constant loop in HI (R2),
which therefore is the trivial group ! In fact, this argument

shows that the first homology group of any convex (in fact
any starlike) open subset of R2 is trivial. For more on HI,
see the Greenberg lectures on algebraic topology or the book
by Bott and Th.

Of course, R2 - (0,0) is not convex, or starlike, and one
would like to compute its first homology group. First, let
me try to convince you that it is non-trivial. For this, we

will need the following lemma, which is the crucial bridge
between topology and calculus.

Let X be a path connected open subset of R2, and v be a

curl free smooth vector field on it. Then, for two loops ...,

and T in X such that..., rv T, we have J')'v = JTV.

To see this, first let us make the simplifying assumption
that both ..., and T are smooth, and that the homotopy

F : [0,1] x [0,1] -+ X between them, satisfying F(t,O) =
...,(t), F(t,1) = T(t), is also smooth. We let a denote the

path defined by a(s) = F(O,s) = F(1, s). Write F(t, s) =
(FI (t, s), F2(t, s» in terms of its component functions. Write
v(x, y) = (p(x, y), q(x, y), and for brevity let us denote par-

tial differentiation by subscripts e.g. Pll = %, FI,s = aa~1
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etc. We will use the smooth homotopy F to 'pullback' the
vector field v from X to a smooth vector field w on the

square [0,1] x [0, 1]. More precisely, w(t, s) = (p(t, s), q(t, s))
where:

p(t,s)

q(t,s)

= p(F(s, t))Fl,t + q(F(s, t))F2,t

= p(F(s, t))Fl,s + q(F(s, t))F2,s

This seems a bit concocted, but is got from substituting

Fl(t, s) for x, F2(t, s) for y in the 'differential' p dx + q dy,
and reading the coefficients of dt and ds in the resulting
differential. Using the chain rule, one directly computes

curl w(t, s) = (qt(t, s) - Ps(t,s))

= (qx(F(t, s)) - py(F(t, s))) (Fl,tF2,s - Fl,sF2,d
=0

since v curl free implies qx - Py = 0. Thus this new vector
field w on [0,1] x [0,1] is also curl free. Now, by Green's
Theorem, (see page 134 of Spivak's book), we have

where the second line is the line integral of w along the
boundary of the square, and the third line follows by substi-

tuting the definition of wand change of variables. (If you
want to avoid Green's theorem, use the fact that w is curl

free on [0,1] x [0,1] implies the existence of a potential func-

tion 1/Jconstructed exactly as we did for R2 in (5). Then the
second equation above is true since the line integral of w on

the closed loop defined by the (counterclockwise) boundary,
of [0, 1] x [0,1], will have to be zero, by (3).)
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1

For the more general piecewise smooth situation, one subdi-

vides the square [0,1] x [0,1] into small subsquares on each
of which the homotopy is smooth, and replaces the integral
of curl w on each subsquare by a line integral of w on its
boundary. Adding up for all these subsquares, the line in-
tegrals on all the internal edges cancel pairwise, and what

remains in the end, as before, is the line integral of w on the
boundary of [0,1] x [0,1]. This proves the lemma.

Solution of the Problem

To get back to our story now, let us review the opening

discussion about solving (1) for R2 in the light of homology.
Note that since every loop in R2 is equivalent to the ronstant
loop or trivial loop, the lemma above implies that the line

integral of a curl free vector field along any loop is equal

to the line integral around the constant loop, which is zero.

Furthermore, if ')'1 and ')'2 are two paths joining the point

p to the point Q in R2, ')' = ')'1 * ')'2"1 is a loop based at

P, so 0 = J"( v = J"(1 V - J,,(2v for a curl free field v, which
implies that the work done along a path in a curl free field

depends only on thp. p.nd-points of the path. This is precisely

the statement (3). Thus for a curl free v on R2, we may

define the potential function 4J(x,y) = J"( v where')' is a.ny

path joining a predetermined point P to the moving point

Q = (x, y). We chose one such path in (5), but could have
chosen any other.

On the other hand, for R2 - (0,0), we have the curl free

(whirlpool) vector field w introduced earlier, whose integral

along the loop ')'(t) = (cos21rt,sin21rt) is non.:zero. So the
lemma above implies, in particular, that this loop rannot bp.

equivalent to the trivial loop !

In other words, the homology group Hl(R2 - (0,0)) is non-
trivial.
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In fact, if we consider the loops ')'11(t) = (cos 27rnt, sin 27rnt)

for nEZ, we see that J-Yn;".)= 27rn, so that ')'11cannot be
equivalent to ')'m for n t= m. Thus the first 'homology group
of R2 - (0,0) is at least as large as the group of integers.

In fact, it turns out (though the proof is quite non-trivial)

that the first homology of the punctured plane HI (R 2 -
(0,0)) ::: Z, with the loop ')'n introduced above representing

the integer n. So every loop')' in R2 - (0,0) is equivalent to

some ')'11'and in view of the preceding lemma, this integer n

is determined by the relation 27rn = J-y;".).The integer n is
called the winding number of ')' about (0,0). For the snaky

loop in Figure 1, for example, the winding number is - 2.
For more on this fascinating topic, and the connections with

complex analysis, see chapter 4 of the book by Ahlfors.

To tie up this discussion, it would be very pleasing if instead

of throwing up one's hands about the insolubility of (1), one
could use the fact that HI (R2 - (0,0)) ::: Z to give a quan-
titative answer regarding (1). For this we will use a very
beautiful theorem, which is due to Georges de Rham. Note

that our foregoing lemma says that for X a path connected

open subset of R2, the line integral J-yv = 0 for a curl free
field v on X if ')' is equivalent to a constant loop in X. (In
fact, this is a reformulation of the lemma).
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The de Rham theorem (in this particular situation) asserts

the following: If for a curl free vector field v we have that

J-yv = 0 for all loops')' in X, then v = \l4J for some smooth
function 4Jon X.

Now let v be a curl free vector field on R2 - (0,0). Compute

the line integral J-Ylv, where ')'1 (t) = (cos 27rt, sin 27rt) is the

generating loop for H1(R2 - (0,0)). This will be some real

number Q, say. Since J-Ylw = 27r,where w is the whirlpool
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vector field, it follows that

1 (v - .!2:...w)= 0
')'1 211"

Since 1'1 is a generator for H dR2 - (0,0)), and the line

integral over a sum of loops is the sum of the line integrals
over those loops, it follows that

for all n E Z. Since every loop l' in R2 - (0,0) is equivalent

to 1'n '" n1'1 for some integer n, and v - 2~"'" is curl free, it

follows that J')'(v - 2~""')= 0 for p.vP.ryloop l' in R2 - (0,0).

Thus, by de Rham's theorem, we have v -.~ = \l<jJ for

some smooth function <jJ on R2 - (0,0).

So the final answer is : If v is a vector field on R2 - (0,0)

such that curl v = 0, then there exists a real number ,\ and

a smooth function <jJon R2 - (0.0) such that v = ,\ +

\l cp, where ,,\ = 1/271"J,),1v and is the whirlpool vector
field. So we have .measured' exactly how far we are from

the solvability of (1).

Another algebraic way of saying the same thing is as follows.

Denote, for X as above, the R-vector space of curl free vector

fields on X by Z 1(X). In this vector space, there sits the

vector subspace of all vector fields which are gradients of

potential functions, and this subspace is denoted B 1(X).

The quotient space ZI(X)/B1(X). which is called the first

dp. Rham rohomology of X and denoted HI (X) is therefore

a real vector space which measures how much curl free fields

depart from being gradients of functions. For example, the

opening discussion showed that HI(R2) = O. What we have

seen as the outcome of the entire discussion for R2 - (0,0)
is that H1(R2 - (0.0)) is isomorphic to the one dimensional

real vector space R. and a basis element is. for example. the

'whirlpool' vector field (,.:.
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More generally, for X as above, given a de Rham cohomol-

ogy class represented by a curl free field v, we get a natu-

ral abelian group homomorphism Bv : HI (X) ~ R, which

takes the homology class of a loop 'Yto J"Yv. That this map

v .~ Bv is well defined follows from the foregoing discus-
sion. The full force of the de Rham theorem is: This map

B : H1{X) ~ homz{Hl{X),R) is an isomorphism of R-
vector spaces. The symbol on the right side denotes abelian
group homomorphisms, and it is an R vector space via point-
wise scalar multiplication. For a proof, see the book by Bott

and Tu or the book by Singer and Thorpe.

Finally, the first homology group HI (X) can be defined us-
ing continuous loops and homotopies, instead of piecewise
smooth loops and homotopies. Certain approximation theo-

rems say that the homology remains unchanged. This clearly
makes Hl{X) a topological invariant. The de Rham theo-
rem therefore asserts that the vector space H1{X), which

is a purely analytical object governing the solvability of a
system of first order partial differential equations, is in fact

a topological invariant. So, for example, if you took any
open starlike subset of R2, and punched out a closed disc
contained in its interior, the space you'd get has the same
first de Rham cohomology as the punctured plane ! In par-

ticular, the above analysis of curl free fields on R2 - (O,O)
applies to such a space.

Address for correspondence

VPathi

Indian Statistical Institute,

8th Mile,Mysore Road

Bangalore 560 059, India

The reader may want to guess what happens to homology

and de Rham cohomology for X = R2 - F, where F is a Flgul'fl3 ThefDnJs
finite set of points. I urge you to try. I also leave you with

a drawing (Figure 3) of the torus that you may want to
analyse.
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