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1 A Question on polynomials

1.1 Introduction

In this article, we discuss a theorem that could be called the cornerstone of algebraic geometry over
fields. In German, “Nullstellensatz” means “Zero-Set Theorem”.

The objects of study in algebraic geometry are the loci, or zero sets of polynomials. In school
coordinate geometry (in 2 or 3 dimensions), one encounters things like the circle, which is the zero-
set of the polynomial f(X,Y ) = X2 + Y 2 − 1 in R2, or the hyperboloid, which is the zero-set of
f(X,Y, Z) = X2 +Y 2−Z2− 1 in R3. These objects are examples of “affine algebraic sets”, and were
discussed in the article [P-S] in an earlier issue of Resonance.

1.2 Affine algebraic sets

So, more formally, let {fi(X1, .., Xn)}i∈S be some collection of polynomials in n-variables with real
coefficients, indexed by some (finite or infinite) set S. The real affine algebraic set V (S) is defined
as:

V (S) := {(a1, .., an) ∈ Rn : fi(a1, .., an) = 0 for all i ∈ S}
That is, V (S) is the set of common zeroes (or zero locus) of all the polynomials in S. For brevity, it
is often just called a real algebraic set. Similarly one can define a complex algebraic set as the
common zero-set in Cn of some collection S of polynomials in n variables X1, .., Xn with complex
coefficients. (If S is a finite set, say S = {fi}ki=1, we customarily write V (S) as V (f1, .., fk). It turns
out, as will be discussed later, that all algebraic sets, real or complex, can defined by only finitely
many polynomials.)

It is clear that if f is a polynomial of the form:

f(X1, .., Xn) = Σfi∈T gi(X1, .., Xn)fi(X1, .., Xn)

where T is any finite subset of S, and gi any polynomials in X1, .., Xn, then f will vanish identically
on the algebraic set V (S). Then one can ask the converse question: Suppose one knows that some
polynomial f(X1, .., Xn) identically vanishes on V (S). Can one assert that f is somehow a combination
of some fi’s in S ?

A trivial example shows that this is too much to expect. To wit, consider the degree 2 polynomial
F (X) = X2, and the algebraic set V (F ) ⊂ R. Clearly V (F ) is just the single point 0. The polynomial
X clearly vanishes on V (F ), but the degree 1 polynomial X can never be g(X)F (X), since F (X) is of
degree 2. This same example also works if R is replaced by C. In other words, this hitch occurs over
both R and C. Note, however, that X2 is a multiple of (in fact equal to) F , so we may be tempted
to make the modified
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Conjecture 1.1 Suppose a polynomial f with real (resp. complex) coefficients, in n-variables, van-
ishes identically on the algebraic set V (S) ⊂ Rn, (resp. ⊂ Cn). Then, we claim that there is a positive
integer r such that:

fr = g1f1 + ...gkfk

where gi are some polynomials with real (resp. complex) coefficients, and fi ∈ S.

Let us first examine this conjecture in the real case, by looking at an example:
Take V (F ) ⊂ R2 where F (X,Y ) = X2 + Y 2. Clearly, V (F ) is just the single point (0, 0), the

origin. The polynomial X vanishes identically on V (F ). However, the reader can easily check that no
power Xr of X can ever be a multiple of F .

Suppose we break out of R, and consider this same example over the complex numbers C. Now,
V (F ) ⊂ C2 becomes a large set. In fact V (F ) = {(a,±ia) : a ∈ C} (where i =

√
−1) is a pair of

(complex) lines in C2. Now we are in better shape because of the following:
Exercise: Prove that if a polynomial f(X,Y ) with complex coefficients vanishes identically on

V (F ) ⊂ C2, where F (X,Y ) = X2 + Y 2, then f is divisible by F . In this example, one does not even
need to raise f to a power. (Hint: Change to new variables: Z = X+ iY, W = X− iY , and show that
any complex polynomial f(Z,W ) vanishing identically on both Z and W axes is divisible by ZW ).

So, the conjecture above is verified at least for the above example, if we do everything over C. Is
it always true over C? What can one say in the real case, if anything? Why are the two situations
different? Can one use other fields besides R and C? What are “fields”, anyway?

2 Some Algebra

In this section we’ll introduce some algebraic constructs that will help us to get a handle on the
problem 1.1. The reader may wish to look at [J], [A-M] or [Z-S] for further details. Fields were
recently discussed in the article [Ja] in an earlier issue of Resonance. However, the account below is
more or less self-contained.

The basic algebraic objects that we immediately need to get familiar with are rings, fields, and
finally rings of polynomials with coefficients in a field. In the sequel, one could expend effort and censor
out all mention of rings, fields, ideals and the like, and state everything in terms of polynomials,
multiplication and division. But it is better to do some propaganda for the axiomatic method by
showing you its effectiveness. Note that the conjecture 1.1 is a concrete question about polynomials,
and we are introducing some machinery to solve this problem, and not for its own sake!

2.1 Rings and fields

A ring is a set A together with two operations, say “+” and “.” (called addition and multiplication)
which satisfy the following:

(R1) a+ b = b+ a for all a, b ∈ A (commutativity of +)

(R2) a+ (b+ c) = (a+ b) + c; a.(b.c) = (a.b).c for all a, b, c ∈ A (associativity of + and .)

(R3) There exists an element 0 satisfying a+ 0 = a for all a ∈ A (existence of additive identity).

(R4) For each a ∈ A, there exists an element (−a) such that a + (−a) = 0 (existence of additive
inverses).

(R5) a.(b+ c) = a.b+ a.c, and (b+ c).a = b.a+ c.a for all a, b, c ∈ A (left and right distributivity).
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If in addition, we also have a.b = b.a for all a, b ∈ A, we call it a commutative ring. If there exists
an element 1 ∈ A, with 1 6= 0 and satisfying a.1 = a = 1.a for all a ∈ A, we call it a ring with
identity. A subring B of a ring A is a subset of A which is also a ring with the + and . operations
from A. If A is a commutative ring with identity such that for each non-zero element a ∈ A, there
exists an element a−1 (called the multiplicative inverse of a) satisfying a.a−1 = 1, we call A a field.
So a field is an abelian group with respect to (+), and its non-zero elements form an abelian group
with respect to multiplication “.”.

Fields are usually denoted by the lowercase letter k, or the bold uppercase F. If a ring A is a
vector space1 over a field k, such that the scalar multiplication from k is compatible with the ring
operations (i.e. λ(a+ b) = λa+ λb and λ(a.b) = (λa).b = a.(λb) for all λ ∈ k and all a, b ∈ A) then A
is called a k-algebra. In the particular case when A contains a field k as a subring, A clearly becomes
a k-algebra, with vector addition being the ring addition +, and scalar multiplication coming from
ring multiplication “.” by elements of k.

Example 2.1 (Examples of Rings, Fields, Algebras)

(i) The set of integers Z is a commutative ring with identity, with its usual addition and multipli-
cation operations. The rational numbers Q, the real numbers R and complex numbers
C with their usual operations are fields. Clearly Z ⊂ Q ⊂ R ⊂ C is a chain in which each inclu-
sion is one of a subring in a bigger ring. Thus R is a Q-algebra (of infinite, in fact uncountable
dimension as a Q vector space), and C is an R-algebra of vector space dimension 2 (spanned
by the basis {1, i}).

(ii) Let m ≥ 2 be a natural number. The set of integers modulo m, (also called residue classes
mod m) denoted Zm, is the set {0, 1, ..,m− 1}. The sum a + b is defined as r where r is the
remainder (< m) upon dividing the integer a + b by m. Multiplication is defined similarly.
These are called addition and multiplication modulo m, and Zm becomes a commutative
ring with identity under these operations. The properties R1 through R5 for Zm follow from
the corresponding properties for Z.

(iii) If m = p a prime, then Zp becomes a field (why?), often denoted Fp to emphasise its “fieldhood”.

(iv) The set of continuous complex valued functions on the closed interval [0, 1] is a commu-
tative ring with identity under the operations of multiplying and adding continuous functions
pointwise, and is denoted C([0, 1]). Likewise C(R), the commutative ring of continuous complex
valued functions on R. The ring C(R) contains the subring Cc(R) of continuous functions
on R of compact support (i.e. continuous functions f such that f(x) = 0 for |x| ≥ a, for
some a depending on f). Note Cc(R) is a ring without identity, (the constant function 1 is not
of compact support!). In fact C(R), since it contains the constant functions, is a C-algebra.
Cc(R) is also C-algebra (because multiplying a continuous compactly supported function with
λ ∈ C gives a continuous compactly supported function) even though it does not contain C as
a subalgebra! Another interesting way of making Cc(R) a ring is to retain the old addition, but
make multiplication the convolution product f ∗ g defined by:

(f ∗ g)(x) =
∫ ∞
−∞

f(x− y)g(y)dy

With this new ring structure, Cc(R) becomes a commutative ring without identity!

1Take the definition of an R-vector space, replace R by k everywhere, and you have the definition of a k-vector
space.
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(v) The set of n × n matrices with entries in a commutative ring A with identity, is a ring
with identity under matrix addition and multiplication. It is denoted by M(n,A), and is not a
commutative ring (therefore not a field) if n ≥ 2. More generally, for those who are aware of
Hilbert spaces, the set of all bounded operators B(H) on a Hilbert space H is a ring with
identity.

(vi) The set of polynomials in n-variables with coefficients in a field k is denoted k[X1, .., Xn], and is
a commutative ring with identity (with the operations of addition and multiplication of polyno-
mials). It contains k as the subring of degree 0 polynomials, and is therefore a k-algebra. It is
called the polynomial ring or polynomial algebra over k in n-variables. (Polynomials were
discussed in the article [Si] in an earlier issue of Resonance).

(vii) An important object is the field of rational functions k(X1, .., Xn) in n-variables. It is
defined as the set: {

P (X1, .., Xn)
Q(X1, ..., Xn)

: P,Q ∈ k[X1, ..., Xn], Q 6= 0, gcd
}

(where common factors in P , Q can be cancelled without changing P
Q .) Caution: When we say

that a polynomial:
f(X1, .., Xn) =

∑
i1+..in≤d

ai1i2..inX
i1
1 ..X

in
n

in k[X1, .., Xn] is non-zero (denoted f 6= 0), we mean that some coefficient ai1i2..in of that
polynomial is non-zero! Its values at all points of kn may be zero. For example, the 1-variable
polynomial f(X) = X2 +X ∈ F2[X] gives zero when evaluated at the two points {0, 1} of F2,
but f is not the zero polynomial. This, of course, doesn’t happen in R[X1, .., Xn] or C[X1, .., Xn]
(Why not?).

The addition and multiplication in k(X1, .., Xn) are defined analogously to what we do for
rational numbers, i.e. using a common denominator etc. Note that k(X1, .., Xn) is a field,
because the inverse of a non-zero element P/Q is Q/P . Also k(X1, .., Xn) clearly contains
k[X1, .., Xn] as a subring, and so k is a subfield of this field, and so it is a k-algebra in a natural
way. Those who have done some complex analysis will recognise the 1-variable case C(X) as
the ring of meromorphic functions on the complex plane having at worst a pole at ∞.

2.2 Ideals

From this point on, all rings we consider will be assumed to be commutative, unless otherwise stated.
For the sake of convenience we will write ab instead of a.b for the product of the elements a and b in
a ring. An ideal I of a ring A is a subset of A such that:

(I1) a+ b ∈ I for all a, b ∈ I.

(I2) ax ∈ I for all a ∈ A, x ∈ I.

Clearly, if I contains the identity element 1, the property (I2) of an ideal would force I to be all
of A. Thus the interesting ideals do not contain 1. An ideal I in a ring A which is not equal to A is
called a proper ideal. Again, from (I2), proper ideals do not contain any invertible element.

Lemma 2.2 The only proper ideal in a field k is the zero ideal {0}. Conversely, if a commutative
ring A with 1 contains no proper ideals except {0}, then it is a field.
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Proof: If an ideal I in a field k contains a non-zero element a, then a−1a = 1 is forced to lie in the
ideal I. Thus I = A by the above. Conversely suppose a ring A contains no non-zero ideals besides
A. Then for x 6= 0 in A, consider the ideal Ax := {ax : a ∈ A}. This is a non-zero ideal I in A since
it contains x, and therefore must be equal to A. In particular it contains 1, so 1 = ax for some a ∈ A,
and a = x−1, so A is a field. 2

Let us run through some examples of ideals.

Example 2.3 (Examples of Ideals)

(i) If A is any ring, and S ⊂ A is any subset, define the subset < S >⊂ A by:

< S >:= {
∑
xi∈F

aixi : F a finite subset of S, ai ∈ A}

< S > is easily checked to be an ideal in A, called the ideal generated by S. Indeed, < S >
is the intersection of all ideals of A that contain S (prove!), and thus the smallest ideal of A
containing the subset S. If S is a singleton {x}, the ideal < S > is precisely Ax introduced
above, and called a principal ideal. If an ideal I can be written as I =< S > for a finite set
S, it is said to be finitely generated.

(ii) The only ideals in Z are principal ideals, viz., Zm =< m > for some integer m. This can be seen
by taking the smallest positive integer m in the ideal I ⊂ Z, and using the division algorithm
to prove that if some a ∈ I were not divisible by m, there would be a minimum strictly positive
remainder s = a− rm on dividing a by m, and s would (i) lie in I (since a and m lie in it), and
(ii) be strictly less than m, a contradiction. Since Q,R,C are fields, they contain no proper
ideals except {0} by lemma 2.2 above.

(iii) By the use of the result for Z, it easily follows that the only ideals in A = Zm are principal ideals
Ax for some x ∈ A.

(iv) Matrix rings M(n,A) for n ≥ 2 are not commutative, so left, right and 2-sided ideals have to
be distinguished. For example the set of all matrices with vanishing first column is a left ideal.
Left multiplying such a matrix with any matrix will give a matrix with vanishing first column,
as will adding two such matrices. Similarly, those with vanishing first row will constitute a right
ideal. If A is commutative, and I is an ideal in A, the subset M(n, I) will be a 2-sided ideal.
The set of all compact operators on a Hilbert space H is a two-sided ideal in B(H).

(v) Let Z ⊂ [0, 1]. The set of all continuous functions in C([0, 1]) which identically vanish on Z
will constitute an ideal in C([0, 1]). One can define similar ideals in C(R), and Cc(R). The
conjecture 1.1 can be formulated for C([0, 1]) as well: If a closed subset Z ⊂ [0, 1] is the set of
common zeroes of an ideal I ⊂ C([0, 1]), and f ∈ C([0, 1]) vanishes identically on Z, how does
f relate with I? The answer, which is the famous Gelfand-Naimark Theorem in analysis, says
that f lies in the closure of the ideal I with respect to the sup-norm topology on C([0, 1]). The
forthcoming Nullstellensatz can be thought of as the analogue of this theorem for polynomial
rings.

(vi) Let Z be any subset of kn, where k is a field. The ideal

I(Z) = {f ∈ k[X1, .., Xn] : f(a1, .., an) = 0 for all (a1, .., an) ∈ Z}

of all polynomials vanishing identically on Z is an ideal in the polynomial ring k[X1, .., Xn]. It
is called the ideal of Z.

5



For any set S ⊂ k[X1, .., Xn], one can define an algebraic subset V (S) over k as the following
subset of kn:

V (S) = {(a1, ..., an) ∈ kn : f(a1, .., an) = 0 for all f ∈ S}

Note that V (S) = V (< S >), so all algebraic sets are zero sets of some ideal, and we might as well
only consider the algebraic sets V (I) for I ⊂ k[X1, .., Xn] an ideal. In fact, more is true:

Proposition 2.4 (Hilbert Basis Theorem) If k is a field, and I ⊂ k[X1, .., Xn] an ideal, then I is
finitely generated. i.e. I =< f1, .., fm > for some polynomials fi, 1 ≤ i ≤ m.

In particular, every algebraic set is the common zero set of finitely many polynomials, since for
any subset S ⊂ k[X1, .., Xn]:

V (S) = V (< S >) = V (< f1, .., fm >) = V (f1, .., fm)

We will not digress to prove the proposition 2.4. The case n = 1 is easy, because for single variable
polynomial rings k[X], one can divide one polynomial f by another polynomial g of degree deg g = d
and get a remainder r such that either r = 0 or deg r < d. The proof given in (ii) of example 2.3
above to show that all ideals in Z are principal (singly generated) works also for k[X], by choosing
the polynomial of least degree in an ideal I ⊂ k[X]. Unfortunately, this “division algorithm” fails for
n ≥ 2. In fact, convince yourself that the ideal < X1, X2 > in k[X1, X2] cannot be singly generated. If
you are unwilling to take the above proposition on faith, or look up the (one page) proof in any of the
books listed above, be assured that you can still read on by mentally substituting “finitely generated
ideal” whenever you read “ideal”, and be none the worse for it. Incidentally, finding minimal sets of
generators for ideals in polynomial rings is an old and still very active area of algebra.

Now we can reformulate the conjecture 1.1 for any field k. Clearly, if Z = V (I), i.e. the common
zero set of some ideal I ⊂ k[X1, .., Xn], then the ideal I is certainly contained in I(Z) (defined in (vi)
of example 2.3 above). The conjecture 1.1 may be rephrased as:

Conjecture 2.5 Let k be a field, and I ⊂ k[X1, .., Xn] be an ideal. If f ∈ I(V (I)), is it true that
fr ∈ I for some r (depending on f)? Characterise the fields k for which it is true. (We saw in §1.2
above that it is false for k = R).

Why did we introduce ideals? Mainly because we can construct new rings out of old, “by going
modulo” an ideal I. Let I ⊂ A be an ideal in a commutative ring A. We define an equivalence relation
in A as follows: a ∼ b if a − b ∈ I. It is also often denoted as a ≡ b (mod I) (“a is congruent to
b modulo I”). Check that it is an equivalence relation. The set of equivalence classes {a : a ∈ A}
is denoted A/I. It also becomes a ring by defining a+ b := a+ b and a.b := ab. To check that these
operations are well defined, i.e. if a = a1, b = b1, then by definition, a−a1 = x ∈ I and b−b1 = y ∈ I.
Thus (a + b) − (a1 + b1) = x + y ∈ I,i.e. a+ b = a1 + b1. Similarly check that ab = a1b1. It is
precisely here that all the properties of an ideal are used. A/I is called the quotient of A by I, and
as a familiar example, if we take A = Z, I =< m >, then A/I = Zm discussed earlier. Historically,
ideals were created by Kummer to handle the breakdown of unique prime factorisation of elements in
rings like

Z[
√

5] := {m+ n
√

5 ⊂ R : m,n ∈ Z}

(a subring of R) (where 2.2 = (
√

5 − 1)(
√

5 + 1) are two distinct irreducible factorisations of 4), by
replacing it with factorisation of ideals.
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2.3 Coordinate rings, k-algebras of finite type

We can now give a geometric meaning to some quotients of polynomial rings. Let Z be an algebraic
set in kn. If we take any polynomial f(X1, .., Xn), it can be regarded as a k-valued function on kn,
by evaluating it at the point p = (a1, .., an), viz. computing f(a1, .., an). We can restrict such a
polynomial function f to the subset Z ⊂ kn, and get a function on Z. But different polynomials
f, g ∈ k[X1, ..Xn] could end up restricting to the same function on Z. This will happen if and only
if f − g vanishes identically on Z. That is, if and only if f − g ∈ I(Z). That is, if and only if f = g
in k[X1, .., Xn]/I(Z). Thus k[X1, .., Xn]/I(Z) is just the ring of functions on Z which are restrictions
of polynomial functions on kn, and is called the ring of k-regular functions or k-coordinate
ring of Z, and denoted k[Z] (not to be confused with the polynomial ring in the variable Z!). The
reformulated conjecture 2.5 asks to what extent an ideal I can be gleaned from its zero-set Z = V (I).
Another way of formulating it would be ask to what extent can the algebraic object k[X1, .., Xn]/I be
gleaned from the geometric k-coordinate ring k[V (I)] = k[X1, .., Xn]/I(V (I)).

Since we are in the business of formalising everything, we note that if I ⊂ k[X1, .., Xn] is a proper
ideal, its intersection with the degree 0 polynomials k ⊂ k[X1, .., Xn] is {0}. Thus the quotient
ring k[X1, .., Xn]/I also contains k as a subring, and thus becomes a k-algebra. Quotient rings of
the form B = k[X1, .., Xn]/I, where I is a proper ideal, are called k-algebras of finite type. The
equivalence classes Xi in B are usually denoted xi for convenience, and called coordinate functions.
Clearly, f(X1, .., Xn) = f(x1, .., xn) by the definition of the ring operations in B, and thus these xi’s
generate B as a k-algebra, i.e. every element of B can be written as a polynomial in the xi’s with
coefficients from k. Unlike the polynomial ring however, some of these polynomials in the x′is maybe
zero. For, if f(X1, .., Xn) ∈ I, then by definition, the equivalence class f(X1, .., Xn) = 0 in B, i.e.
f(x1, .., xn) = 0. Conversely, if f(x1, .., xn) = 0, then f ∈ I. Thus I is precisely the set of “constraints”
or “relations” that measures the departure of the ring B from the polynomial ring k[X1, .., Xn]. The
ring B is denoted k[x1, .., xn], the lower case letters reminding us that, unlike in the polynomial ring
k[X1, ...., Xn], there may be non-trivial relations between the xi’s in k[x1, .., xn]. For example, if we
take the ideal I =< X2 − 2 > in Q[X], then in the ring Q[X]/I = Q[x], we have x2 = 2. This ring
(which turns out to be a field, why?) is therefore also written as Q[

√
2], and is in fact the smallest

subfield of R containing Q and
√

2. Similarly, in the R-algebra of finite type R[X]/ < X2 + 1 >
(which is R[i] = C), we have i2 + 1 = 0. On the other hand, since π is transcendental2, i.e. does
not satisfy any non-zero polynomial with rational coefficients, the ring Q[π] (defined as the smallest
Q-subalgebra of R containing π) is identical (“isomorphic”) to the polynomial ring Q[X].

Here is a little lemma which comes in handy later on:

Lemma 2.6 If B is a k-algebra of finite type, then the dimension of B as a k-vector space (denoted
dimk B) is countable.

Proof: By definition, B = k[x1, .., xn] for some n. Since every element in B is a polynomial in xi
with coefficients in k, it is a (not necessarily unique) finite k-linear combination of the monomials

{xi11 x
i2
2 ..x

in
n : ij ∈ Z+}

which is a countable set S. By standard linear algebra S contains a basis, which is therefore also a
countable set. 2

2A deep theorem due to Lindemann and Weierstrass.
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3 Maximal ideals, field extensions

3.1 Maximal ideals

From now on, all rings are assumed to be commutative, with 1.
An ideal I in a commutative ring A is called a maximal ideal if it is a proper ideal, and contained

in no proper ideal other than itself.
Let us prove that every proper ideal I of a ring A is contained in some maximal ideal. For, consider

the family Σ of all proper ideals which contain I, which is non-empty since I ∈ Σ. Partially order Σ
by inclusion, and check that if {Jα}α∈Γ is any totally ordered subset of Σ, then ∪α∈ΓJα is a proper
ideal, and in fact an element of Σ which is an upper bound for this subset. Thus, by Zorn’s Lemma,
(see [SMS] for a discussion of this all-pervasive lemma that is crucial to all mathematics!) Σ contains
maximal elements, which are just maximal ideals containing I. Since {0} is a proper ideal in every
ring, every ring has maximal ideals.

There is an easy way to determine if I is maximal or not by looking at the quotient ring A/I. To
wit,

Lemma 3.1 A proper ideal I in a ring A is maximal iff the quotient ring A/I is a field.

Proof: Clearly if I ⊂ J for some ideal J of A, then the set J/I := {a : a ∈ J} becomes an ideal in
A/I. Further, J is a proper ideal of A iff J/I is a proper ideal of A/I. Finally, J = I iff J/I = {0}.
Thus I is a maximal ideal iff A/I contains no proper ideals other than the zero ideal {0}. We saw in
the lemma 2.2 of the last subsection that this happens iff A/I is a field. 2

Example 3.2 We have seen that if A = Z, or the single variable polynomial ring k[X], all ideals
in A are principal, i.e. of the form < a > for some a ∈ A. Further, such ideals will be proper iff a
is not an invertible element, i.e. a 6= ±1 if A = Z, and a 6∈ k \ {0} if A = k[X]. If < a >,< b >
are proper ideals either of these rings, then < a >⊂< b > iff a is a multiple of b. Thus < a > is a
maximal ideal iff a is not invertible, and divisible by nothing except itself, or 1, or other invertible
elements in A. In the case of Z, this happens iff a is ± prime and 6= ±1. (Thus the lemma 3.1 explains
(iii) of example 2.1). If A = k[X], this happens iff a is an irreducible polynomial3 in k[X] and not
in k \ 0, i.e. irreducible of degree ≥ 1. For example, X2 − 2 is irreducible in Q[X], and X2 + 1 is
irreducible in R[X] (and the above lemma 3.1 explains why Q[

√
2] and R[i] = C are fields). What

are the irreducible polynomials in C[X]? Before we answer this, let us remark that for the purposes
of ideal generation in any polynomial ring k[X] with k a field, the ideal < αf >=< f > for α 6= 0 in
k, and f ∈ k[X] any polynomial. Thus, when talking of non-zero ideals < f >, we can always assume
that the leading coefficient (coefficient of the highest degree term) of f is 1. Such polynomials are
called monic polynomials.

To see what the irreducible polynomials in C[X] are, we need the:

Theorem 3.3 (Fundamental Theorem of Algebra) Every polynomial of degree ≥ 1 in C[X] has
a root in C.

This theorem is the key to why complex numbers have such magical powers. A proof of this result
can be obtained by using the Liouville theorem in complex analysis, or some elementary topology.
See, for example [Ahl] or [Mil], or [Sp].

Corollary 3.4 Every polynomial of degree ≥ 1 in C[X] is a product of polynomials of degree 1, i.e.
linear polynomials.

3A polynomial f ∈ k[X] is said to be irreducible if it is not a product f = gh with g, h ∈ k[X] and deg g <
deg f, deg h < deg f
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Proof: If deg f(X) = 1, there is nothing to prove. Otherwise, note that f has a root α ∈ C, and is
therefore divisible by (X − α) (prove!). Thus f = (X − α)g(X) where deg g = deg f − 1. Induct on
degree. 2

Thus the only irreducible polynomials in C[X] which are of degree ≥ 1 are linear polynomials, and
the above discussion of example 3.2 clearly yields:

Corollary 3.5 The only maximal ideals in C[X] are the ideals < X − α >, for some α ∈ C. Thus
maximal ideals in C[X] are in 1-1 correspondence with C.

Contrast this with R[X], where aside from the linear polynomials, quadratic polynomials like
X2 + 1 are also irreducible. In fact any quadratic polynomial x2 + ax+ b with real coefficients a and
b satisfying a2 < 4b will be irreducible in R[X]. These, together with the linear polynomials (X − a),
exhaust all the irreducible monic polynomials in R[X] of degree ≥ 1. (Why?)

The preceding discussion leads to the following definition-cum-lemma:

Lemma 3.6 For a field k, following conditions are equivalent:

(i) Every polynomial f(X) of degree ≥ 1 in k[X] has a root in k, i.e. there exists an α ∈ k such that
f(α) = 0.

(ii) Every polynomial f(X) of degree ≥ 1 is a product of linear factors. Hence every root of f(X) is
in k.

(iii) The only irreducible polynomials of degree ≥ 1 are linear polynomials.

(iv) I is a maximal ideal in k[X] iff I =< X − α > for some α ∈ k.

A field k will be called an algebraically closed field iff it satisfies any of the above four equivalent
conditions.

3.2 Field extensions

An inclusion k ⊂ K of fields such that k is a subring of K is called a field extension. For example,
Q ⊂ R, R ⊂ C, or k ⊂ k(X1, .., Xn) where k is any field, are all field extensions. If k ⊂ K is
a field extension, an element α ∈ K is said to be algebraic over k if there exists a polynomial
f(X) ∈ k[X], f 6= 0 such that f(α) = 0. Otherwise it is said to be transcendental over k. For
example

√
2 ∈ R is algebraic over Q. However, by the theorem of Lindemann-Weierstrass cited

earlier, π ∈ R is transcendental over Q. Similarly 1 +
√
−5 ∈ C is algebraic over R, in fact even over

Q. Clearly every element of a field k is algebraic over k. Further, Theorems 3.4, 3.5 of [Ja] are easily
seen to imply that the subset of elements of K which are algebraic over k form a subfield of K. Thus,
the elements of C which are algebraic over Q form the field of algebraic numbers denoted Q. If
k ⊂ K is a field extension in which every element of K is algebraic over k, we call it an algebraic
field extension. For example R ⊂ C is an algebraic extension (why?), as is Q ⊂ Q, but Q ⊂ R is
not, since e.g. π is not algebraic over Q.

There are many other algebraically closed fields besides C. For example, the field Q is algebraically
closed! In fact, there is a result (proved using Zorn’s Lemma) which says that for any field k, there
is a unique “smallest” algebraically closed field k containing it, called the algebraic closure of k.
Since we won’t be needing this result, we will skip the proof. (see [A-M] for a proof). Clearly, theorem
3.3 implies R = C. Note that no finite field k can be algebraically closed, because the polynomial
f(X) =

∏
α∈k(X−α) + 1 (of degree equal to card k ≥ 2) will be identically = 1 at all points of k, and

won’t have a root in k therefore. However, there is an algebraically closed field Fp, in which p times
every element is 0 (here p is a prime). The field of rational functions k(X1, .., Xn) is not algebraically
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closed. (Check that no rational function a = P/Q can satisfy the polynomial f(X) = X2 −X1, for
example. You just mimic the proof that

√
2 is irrational, and use the fact that unique factorisation

into irreducibles (which are also primes4) holds in k[X1, .., Xn]). For a more detailed discussion of
algebraic extensions, see the article [Ja].

In the light of (ii) of 3.6, we clearly have the following remark:

Remark 3.7 If k ⊂ K is an algebraic field extension, and k is algebraically closed, then k = K.

Now we have an innocuous looking proposition which is actually equivalent to the nullstellensatz.
We prove it for fields of uncountable cardinality, though it is true for all fields k. The proof in general
requires the Noether Normalisation Lemma. However, with the cardinality assumption on k, we can
give a cheap proof which goes back to Krull and van der Waerden.

Proposition 3.8 Let k ⊂ K be a field extension such that K is a k-algebra of finite type. Assume
that k is an uncountable set. Then K is an algebraic extension of k.

Proof: As noted in the lemma 2.6, the vector space dimension dimkK is countable, by the hypothesis
on K. Every element of k is certainly algebraic over k, so let α be any element of K \ k. Consider the
set:

S = {(α− a)−1 : a ∈ k}

which makes sense since (α − a) 6= 0 for a ∈ k. Also, all of these elements are distinct. Thus the
cardinality of S is the cardinality of k, that is, S is an uncountable subset of K. Thus all elements
of S cannot be k-linearly independent, otherwise it could be enlarged to a k-vector space basis of K,
which would also be uncountable, and contradict that dimkK is countable. Thus there exist some
non-zero elements {λi}ni=1 ∈ k such that:

λ1(α− a1)−1 + .....λn(α− an)−1 = 0

Now multiply this relation by
∏n
i=1(α− ai) to get a polynomial relation f(α) = 0 with coefficients in

k. (Check that f is not the zero polynomial!) Thus α is algebraic over k. 2

From the remark 3.7 and the proposition 3.8 above, we have the immediate:

Corollary 3.9 If k ⊂ K is a field extension such that (i) K is a k-algebra of finite type, (ii) k is
uncountable and algebraically closed, then K = k.

4 Hilbert’s Nullstellensatz

In the sequel, let k be an uncountable algebraically closed field. (e.g. k = C)

4.1 Maximal ideals in polynomial rings

As remarked before, the cardinality assumption on k can be dropped, but since we need the corollary
3.9, which we have proved only with this assumption, we retain it. Note that C is an uncountable
algebraically closed field, whereas Q and Fp are not (Why? Just enumerate all polynomials of all
degrees with coefficients in k = Q or Fp!)

We are now ready to analyse maximal ideals in k[X1, .., Xn]. We have the following proposi-
tion, which is often called the “small nullstellensatz”, even though it is equivalent to the later “big
nullstellensatz”

4An element x in a ring A is said to be prime if x divides ab implies x divides a or x divides b.
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Proposition 4.1 (Hilbert’s Nullstellensatz I) Let k be as above. Then an ideal I ⊂ k[X1, .., Xn]
is maximal iff I =< X1 − a1, .., Xn − an > for some ai ∈ k. In other words, maximal ideals are in 1-1
correspondence with points of kn.

Proof: We remark that for the single variable case of n = 1, we have already seen this result in (iv)
of lemma 3.6.

First, let us convince ourselves that all the ideals I =< X1−a1, .., Xn−an > are indeed maximal.
For this we need to show that A/I is a field (by lemma 3.1), where A = k[X1, .., Xn]. If f(X1, .., Xn)
is any polynomial in A, one can rewrite it as f((X1 − a1) + a1, .., (Xn − an) + an). Now any power
((Xi − ai) + ai)ni can be written in the form (Xi − ai)hi + ani

i (by binomial expansion), where hi is
a polynomial in Xi. Substituting these in f , we can “Taylor expand” f :

f(X1, .., Xn) = f(a1, .., an) + Σni=1gi(X1, .., Xn)(Xi − ai)
where gi ∈ A are some polynomials. The second term on the right hand side is clearly in the ideal
I =< X1 − a1, .., Xn − an >. This shows that every element in A = k[X1, .., Xn] is congruent to the
element f(a1, .., an) ∈ k (mod I). Also the element a ∈ k ⊂ A is clearly congruent only to itself (mod
I), and no other element of k (since I ∩ k = {0}). Thus A/I is just the field k, and I is maximal.

It is in the converse that the algebraic assumptions on k are required. Let I ⊂ A = k[X1, .., Xn]
be a maximal ideal. Then by definition A/I is a k-algebra of finite type, contains k, and is a field by
lemma 3.1. Denote it by K. Thus k ⊂ K is a field extension. By the corollary 3.9, K = k. Denoting
the equivalence classes of Xi by Xi ∈ K = A/I, it follows that Xi = ai ∈ k for all i = 1, .., n. Saying
that Xi = ai in K, by definition, means Xi−ai ∈ I for all i. Thus the ideal < X1−a1, .., Xn−an >⊂ I.
However, in the last para we saw that the ideal < X1− a1, .., Xn− an > is maximal. Thus it must be
equal to I, which is a proper ideal (being a maximal ideal!). This proves the proposition. 2

Exercise 4.2 Prove that for k as above, a maximal ideal in A = k[X1, .., Xn] is precisely the ideal
of all polynomials vanishing at some point (a1, .., an) ∈ kn. More generally, show that for any ideal
I ⊂ A, the points of V (I) ⊂ kn are in 1-1 correspondence with all the maximal ideals in A which
contain I.

Corollary 4.3 Let k be as above, and {fi}mi=1 be some set of polynomials in A = k[X1, .., Xn]. Then
the algebraic set V (f1, .., fm) is empty if and only if there exist polynomials hi ∈ A for i = 1, ..,m
such that

∑m
i=1 hifi = 1.

Proof: Consider the ideal J =< f1, .., fm >. Then either J is a proper ideal or J = A. If J
were a proper ideal, by the first para of §3.1, it would follow that J ⊂ I for some maximal ideal
I. By the small nullstellensatz I above, I =< X1 − a1, .., Xn − an >. Thus every element of J
would be of the form

∑n
i=1 gi(Xi − ai), and would thus vanish at the point (a1, .., an). In particular

V (J) = V (f1, .., fm) would contain (a1, .., an), and be non-empty. Thus V (f1, .., fm) = φ ⇒ J = A,
and hence 1 ∈ J =< f1, .., fm >. In other words, 1 =

∑m
i=1 hifi for some hi ∈ A. The converse is

obvious (since 1 6= 0!) 2

Note how crucial it is for k to be algebraically closed for the corollary above because, for example,
V (X2 + 1) ⊂ R is empty, but you cannot multiply X2 + 1 by any polynomial h ∈ R[X] to get 1.

4.2 The big Nullstellensatz

Now, for the answer to the conjectures 1.1, 2.5 posed earlier!

Theorem 4.4 (Hilbert’s Nullstellensatz II) Let k be as assumed at the outset of this section (i.e.
uncountable and algebraically closed). If a polynomial f ∈ A = k[X1, .., Xn] vanishes identically at
all points of V (I) for some ideal I ⊂ A , then fr ∈ I for some r.
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Proof: By 2.4, write I =< f1, .., fm >. If f = 0, there is nothing to prove, so assume f 6= 0. The trick
is to add an extra variable, and “invert f” (called the Rabinowitch trick). Indeed, all the polynomials
in A can be regarded as elements of the bigger ring B = k[X1, .., Xn+1]. Consider the ideal J ⊂ B
generated by the elements fi(X1, .., Xn) for 1 ≤ i ≤ m and the extra element Xn+1f(X1, .., Xn)− 1.
Claim that V (J) ⊂ kn+1 is empty. If not, there would be a point (a1, .., an+1) ∈ V (J). Since all
the fi = fi(X1, .., Xn) would have to vanish at this point, it would follow that (a1, .., an) ∈ V (I).
Also since Xn+1f − 1 would have to vanish at this point, we would have an+1f(a1, .., an) = 1. But
then since f vanishes identically on V (I), and (a1, .., an) ∈ V (I), we have f(a1, .., an) = 0. Thus
an+1.0 = 1, i.e. 0 = 1, a contradiction. This proves the claim.

So, by the corollary 4.3 above (applied to J ⊂ B), there must be polynomials hi(X1, .., Xn+1) ∈ B
such that:

1 = hm+1(X1, .., Xn+1)(Xn+1f(X1, .., Xn)− 1) +
m∑
i=1

hi(X1, .., Xn+1)fi(X1, .., Xn)

The above identity holds in the polynomial ring B = k[X1, .., Xn+1]. Substituting Xi = Xi for
1 ≤ i ≤ n and Xn+1 = 1/f in this identity gives us an identity in the field k(X1, .., Xn), since f 6= 0.
This subsitution kills the first term, and we get:

1 =
m∑
i=1

hi(X1, .., Xn,
1
f

)fi(X1, .., Xn)

as an identity in k(X1, .., Xn). Clearly, by using high enough power fr as the common denominator
on the right hand side, (e.g. r = maximum of the Xn+1 degrees of all the hi), and cross-multiplying,
we have:

fr =
m∑
i=1

Pi(X1, .., Xn)fi(X1, .., Xn)

where Pi are some polynomials. This last identity holds in the field k(X1, .., Xn), and both sides of
the identity are in A = k[X1, .., Xn]. Since A sits as a subring in k(X1, .., Xn), the identity holds in
A. Thus fr =

∑
i Pifi ∈ I as asserted. 2

5 Concluding remarks

5.1 Radical ideals and reduced algebras

If I is any ideal in a ring A, one can define a new ideal called the the radical of I, denoted
√
I by:

√
I = {a ∈ A : ar ∈ I for some r}

It is easy to check that this is an ideal, and it contains I by definition. An ideal I is said to be a
radical ideal if

√
I = I. Again it is easy to verify that the radical of any ideal is a radical ideal. The

condition for an ideal I to be radical can be reformulated in terms of the quotient ring A/I. Clearly,
I is a radical ideal if A/I has no nilpotent elements other than 0 (a nilpotent element x in a ring is
an element such that some power of it is 0). Rings which have no nilpotents other than 0 are called
reduced. The main example of a radical ideal is I(Z) where Z is an algebraic set, for clearly if fr

vanishes identically on Z for a polynomial f , then f must also do so. Thus the k-coordinate ring k[Z]
of an algebraic set Z is a reduced k-algebra of finite type.

Thus the nullstellensatz II (Theorem 4.4) implies:
Let k be an (uncountable) algebraically closed field, and A = k[X1, .., Xn] the n-variable polynomial

ring over it:
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(i) For I ⊂ A any ideal, I(V (I)) =
√
I. If I is a radical ideal I(V (I)) = I.

(ii) The maps: I 7→ V (I), and Z 7→ I(Z) are inverses of each other from the set of radical ideals in
A to the set of algebraic sets in kn.

(iii) B is a reduced k-algebra of finite type iff it is the k-coordinate ring of some algebraic set in some
kn. (By definition, B = k[X1, .., Xn]/I for some ideal I. B reduced implies I is a radical ideal.
Now use (ii))

The reader may wonder what happens if we take some subset S ⊂ kn, not necessarily an algebraic
one, consider the ideal I(S) of all polynomials vanishing identically on S (which we have seen to be
an ideal in (vi) of example 2.3), and then take the algebraic set V (I(S)). The answer is that one gets
the smallest algebraic set containing S, called the “Zariski closure of S”. The algebraic subsets of kn

define the closed sets of a topology on kn, called the Zariski topology, and Zariski closure is closure
in this topology. (Exercise: What is the Zariski topology on C? How does it compare with the usual
topology?)

Thus, this reformulation has established a complete back-and-forth passage between the geometric
objects called algebraic sets, and the algebraic objects called k-algebras of finite type, when k is alge-
braically closed. This has beautiful and far reaching consequences not only for algebra and geometry,
but all of mathematics!
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