Indian Statistical Institute, Bangalore MS (QMS) First Year First Semester - Statistical Process Control I

Final Exam Maximum marks: 50 Date: March 11, 2021 Duration: 2 hours

Answer as many questions as you can. The maximum you can score is 50

- 1. Answer whether the following are True or False. Justify your answer in two or three sentences:
 - a. The process capability index *Cpl* of a turning process is 0.93 and the total % of rejection is 4.2%. Then the *Cpu* of the process will be 0.9785.
 - b. Suppose two plotted points in a pre-control chart fall outside the pre-control limits, then the process needs resetting.
 - c. Suppose the normal probability plot indicates that the spring thickness is normally distributed. Then the standard deviation of the spring thickness will approximately equal to 0.5 x (97.5th percentile 50th percentile) computed using the normal probability plot method
 - d. A double sampling plan designed for the incoming inspection of clamping accessories purchased by a furniture manufacturing firm as N = 7500, $n_1 = 50$, $n_2 = 50$, $c_1 = 0$ and $c_2 = 2$. If the fraction defective p = 0.06, then the corresponding *ASN* will be 74.
 - e. A company wish to find a single sampling plan for a situation where lots of size N = 5500 are shipped from a supplier. The supplier's process operates at a fallout level of 0.80% defective. The company want the AOQL from inspection activity to be 2.5%. The sample size of the Dodge Romig sampling plan satisfying the aforementioned requirements is 33?

[10]

2. The case depth of 12 induction hardened piston rods are given in the table below.

2.48	2.56	2.53	2.49	2.43	2.52
2.55	2.52	2.45	2.56	2.46	2.53

- a. Check whether the case depth is normally distributed using the normal probability plot method.
- b. Estimate the process mean and standard deviation.
- c. Suppose the specification on case depth is 2.5 ± 0.2 mm, compute the process capability indices and comment on the capability of the process.

d. Assuming that a piston rod with case depth below the lower specification limit can be reworked and those with case depth above upper specification limit to be scrapped, estimate the % of rework and scrap?

[15]

3. The data given below are temperature readings in ^oC from a chemical process taken every two minutes. The target value is 950.

Sample Number	Temperature	Sample Number	Temperature
1	953	11	966
2	945	12	966
3	962	13	937
4	945	14	946
5	955	15	954
6	963	16	935
7	955	17	959
8	950	18	939
9	949	19	948
10	941	20	958

a. Estimate the process mean and standard deviation

b. Set up and draw an *EWMA* control chart using $\lambda = 0.1$

[15]

- 4. Suppose a product is shipped in lots of size N = 8500. The receiving inspection procedure used is a single sampling plan with n = 50 and c = 2.
 - a. Construct the *OC* curve for the plan?
 - b. Compute *AQL* and *LTPD* for a producer's risk of $\alpha = 0.05$ and consumer's risk of $\beta = 0.12$?

[15]