Indian Statistical Institute, Bangalore MS (QMS) First Year First Semester - Statistical Process Control I

Final Exam Maximum marks: 50 Date: November 12, 2018 Duration: 3 hours

- 1. Write the following are true or false. If false give the correct answer [5]
 - a. A supplier ships a component in lots of size N = 6000. The AQL has been established for this product at 1%. The tightened single sampling plan for this situation from MIL-STD 105E, assuming that general inspection level II is n = 200, Ac = 2 and Re = 3.
 - b. The R library needed for constructing control charts using the R package is *spc*.
 - c. In MIL-STD 105E sampling schemes, the inspection level III requires about twice as much inspection as that of level II.
 - d. In the R code for constructing the individual chart, the type should be specified as *Individual* (*type* = "*Individual*").
 - e. A product is shipped in lots of size N = 3000. Assuming that the process average is 0.5% defective, Dodge Romig single sampling plan with the *LTPD* = 5%, is n = 105 and c = 2.
- 2. Briefly explain the switching procedure between normal, tightened and reduced inspection in MIL-STD 105E? [5]
- 3. The specifications on a critical dimension of a process subject to tool wear are 1.0025 ± 0.0010 . Thirteen samples of subgroup size 5 are collected at every half an hour interval and the \bar{x} and range (*R*) computed. The data is given below. [15]

SL No	\bar{x}	R	SL No	\bar{x}	R
1	1.0018	0.0005	8	1.0028	0.0007
2	1.002	0.0008	9	1.0029	0.0005
3	1.0021	0.0006	10	1.0029	0.0005
4	1.0022	0.0009	11	1.0031	0.0007
5	1.0024	0.0005	12	1.0032	0.0006
6	1.0025	0.0006	13	1.0033	0.0005
7	1.0026	0.0006			

- a. Set up the *R* chart on this process and estimate the process standard deviation?
- b. Can this process capable enough to monitor using a sloping control chart?
- c. Suppose the linear model for \bar{x} in terms of time *h* is $\bar{x} = 1.0026 + 0.000123h$, set up a sloping control chart to monitor the process?
- d. Estimate the duration and number of samples after which the process needs to be reset?
- e. How much should be the reset values?

- 4. Suppose that a product is shipped in lots of size N = 5000. The receiving inspection procedure used is single sampling with n = 50 and c = 2. [15]
 - a. Draw the OC curve for the plan?
 - b. Suppose α = 0.005 and β = 0.1, compute the corresponding AQL and LTPD values from the OC curve?
- 5. A company uses a double sampling plan with $n_1 = 30$, $c_1 = 2$, $n_2 = 50$ and $c_2 = 4$ for incoming inspection where the supplier ships the product in lots of size N = 9000. Compute the probability of acceptance, ASN, AOQ and ATI for the incoming fraction nonconforming p = 0.05 and 0.07? [15]