Statistics for Decision Making - II

Full Marks: 40 Time: $\mathbf{2 h r} \mathbf{~} \mathbf{3 0}$ minutes
Answer 1 and 2 and any two from the rest.

1. The marks obtained by 20 students of College A and 15 student of College B in a mathematics test are given below:

College A				College B		
89	71	47	29	79	12	22
76	84	81	49	61	55	90
63	97	32	73	36	81	76
69	88	43	80	50	73	62
55	52	86	44	50	73	62

Do you think that students of College A are more proficient in mathematics than the students of College B?
2. A firm, manufacturing rivets, wants to limit variation in their length as far as possible. The lengths (in cm.) of 10 rivets manufactured by a new process are given value. In the past, sd of the length of rivets has been 0.145 cm . Examine whether the new process may be considered to be superior to the old.
(8)
3. a) If T_{1} and T_{2} are two statistics, such that, T_{1} is an unbiased estimator for $\theta_{1}+\theta_{2}$ and T_{2} is unbiased for $\theta_{1}-\theta_{2}$, then find unbiased estimators for θ_{1} and θ_{2}.
(4)
b) Let $X_{1}, X_{2}, . ., X_{n}$ be a random sample drawn from a population with mean μ and σ^{2}. Then find the BLUE for μ.
4. a) Describe the test procedure for comparing two standard deviations of a bivariate normal distribution.
(6)
b) Write down the regularity conditions for Cramer-Rao Lower Bound
5. a) State and prove Neyman-Fisher factorization theorem.
b) A random sample of size n is drawn from a distribution with pdf

$$
\begin{gather*}
f(x)=\frac{1}{\theta_{2}} e^{-\frac{\left(x-\theta_{1}\right)}{\theta_{2}}}, \theta_{1}<x<\infty \\
0, \text { otherwise } \tag{5}
\end{gather*}
$$

Where, $-\infty<\theta_{1}<\infty$ and $\theta_{2}>0$. Find the joint sufficient statistics for θ_{1} and θ_{2}.
6. a) Suppose $X_{1}, X_{2}, . ., X_{n}$ be a random sample drawn from $N(\mu, 1)$. Find the CRLB for μ^{2}. (4)
b) Define the following: i) p-value, ii) critical region, iii) mean square error.

