Indian Statistical Institute

SQC \& OR Unit, Bangalore centre
 MS(QMS)

SDM-2 : Mid Semester Exam 2020
This paper carries 60 Marks.
Time: 2 Hrs
Date: 3rd March,2020
Answer as many questions as you can, but the maximum score you can get is $\mathbf{5 0}$ only.

1. a) Let X be a random variable having probability mass function as

$$
\begin{aligned}
p(x) & =p^{x}(1-p)^{1-x}, & x=0,1 \\
& =0, & \text { otherwise }
\end{aligned}
$$

Find the Maximum Likelihood Estimator (MLE) of p.
2. a) Let Z be a standard normal variable. Show that Z^{2} follows a Chi-square distribution with 1 d.f.
b) Hence show that $Z_{1}{ }^{2}+Z_{2}{ }^{2}+\cdots+Z_{k}{ }^{2}$ is distributed as a Chi-square distribution with k d.f, where Z_{i} 's ($\mathrm{i}=1,2, \ldots, \mathrm{k}$) are independently distributed as Normal distribution with mean=0 and standard deviation $=1$.
[6+6=12]
3. A machine produces metal pieces that are cylindrical in shape. A sample of pieces is taken, and the diameters are found to be $1.01,0.97,1.03,1.04,0.99,0.98,0.99,1.01$, and 1.03 centimetres. Find a 99% confidence interval for the mean diameter of pieces from this machine, assuming an approximately normal distribution.
4. A soft-drink machine at a cinema hall is regulated so that the amount of drink dispensed is approximately normally distributed with a mean of 200 millilitres and a standard deviation of 15 millilitres. The machine is checked periodically by taking a sample of 9 drinks and computing the average content. If x bar falls in the interval $191<x$ bar <209, the machine is thought to be operating satisfactorily; otherwise, we conclude that $\mu=200$ millilitres.
(a) Find the probability of committing a type I error when $\mu=200$ millilitres.
(b) Find the probability of committing a type II error when $\mu=213$ millilitres.

$$
[7+8=15]
$$

5. Explain the following with example:
a) Efficiency of an estimator
b) Prediction interval of a future observation
c) Type-I \& Type-II error
