Indian Statistical Institute, Bangalore MS (QMS) First Year Second Semester - Statistics for Decision Making II

Midterm Exam Maximum marks: 50 Date: March 02, 2018 Duration: 2 hours

Answer as many questions as you can, but the maximum score you can get is 50 only.

1. Suppose that X is a discrete random variable with the following probability mass function: where $0 \le \theta \le 1$ is a parameter.

Х	0	1	2	3
P(X)	20/3	θ/3	$2(1 - \theta)/3$	$(1 - \theta)/3$

The following 10 independent observations were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1). Find the maximum likelihood estimate of θ . [8]

- 2. The following are the weights, in grams, of 10 packages of grass seed distributed by a certain company:
 46.4, 46.1, 45.8, 47.0, 46.1, 45.9, 45.8, 46.9, 45.2, and 46.0.
 Find a 95% confidence interval for the variance of the weights of all such packages of grass seed distributed by this company, assuming a normal population. [7]
- 3. A manufacturer of a new pain relief tablet would like to demonstrate that its product works twice as fast as the competitor's product. Specifically, the manufacturer would like to test H_0 : $(\mu_1 = 2 \mu_2)$ Vs. H_1 : $(\mu_1 > 2 \mu_2)$ where μ_1 is the mean absorption time of the competitive product and μ_2 is the mean absorption time of the new product. Assuming that the variances σ_1^2 and σ_2^2 are known, develop a procedure for testing this hypothesis. [8]
- 4. Let U1 and U2 be independent random variables. Suppose that U1 is x2 with v1 degrees of freedom while U = U1 + U2 is chi-square with v degrees of freedom, where v > v1. Then prove that U2 is chi-square random variable with v v1 degrees of freedom.
- 5. A manufacturer is interested in the output voltage of a power supply used in a PC. Output voltage is assumed to be normally distributed, with standard deviation 0.25 Volts, and the manufacturer wishes to test H0: ($\mu = 5$ Volts) against H1: ($\mu \neq 5$ Volts), using n = 8 units. [5+4=9]
 - (a) The acceptance region is $4.85 \le x$ -bar ≤ 5.15 . Find the value of α .
 - (b) Find the power of the test for detecting a true mean output voltage of 5.1 Volts.
- 6. Explain the following with example:
 - a) Unbiasedness
 - b) Efficiency
 - c) Method of Moments in Estimation
 - d) Type-I & Type-II error

 $[4 \ge 5 = 20]$