Indian Statistical Institute, Bangalore

M.S. (QMS) First Year

Second Semester - Reliability, Maintainability and Safety-II

Final Exam

Time: 3 hours Date: 28/04/2023 Maximum Marks: 50

1. Explain different types of warranty schemes with examples.

[10]

2. Define ROCOF. How ROCOF can be used to determine whether a system is improving or deteriorating?

[5 + 5 = 10]

3. Consider the following system

x_1	x_2	x_3	x_4	$\phi(\vec{x})$	<i>x</i> ₁	x_2	x_3	x_4	$\phi(\vec{x})$
0	0	0	0	0	0	1	1	0	0
1	0	0	0	0	0	1	0	1	0
0	1	0	0	0	0	0	1	1	0
0	0	1	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	1	1
1	1	0	0	0	1	0	1	1	1
1	0	1	0	0	0	1	1	1	0
1	0	0	1	0	1	1	1	1	1

- a) Draw the reliability block diagram.
- b) Write the minimum path sets and minimum cut sets.
- c) Give the structure function $\phi(\vec{x})$ for this system using minimum cut sets or minimum path sets.
- d) If the component lifetime follows exponential distribution with parameter λ_i , i=1,2,3,4, find the system reliability.
- e) What could be the maximum and minimum reliability of any system using these four components?

$$[1+2+2+4+1=10]$$

4. Consider a renewal process with underlying exponential distribution $F(t) = 1 - e^{-\lambda}$. Compute the expected number of renewals in (0, t].

[10]

5. Consider an HPP $\{N(t), t \ge 0\}$ with rate λ . Let p denote the probability of failure developing into a consequence C and $N_C(t)$ denote the number of consequence failures in (0, t]. Obtain the mean number of C failures in (0, t].

[10]

- 6. Write short notes on the following
 - a) Availability and Maintainability
 - b) Renewal process

[5 = 5 = 10]