

Indian Statistical Institute, Bangalore

M.S (QMS) First Year

First Semester - Reliability, Maintainability and Safety I

End Term Exam Time: 2 Hours Date: 12 November, 2025 Max Marks: 50

Answer as many questions as you can. The maximum you can score is 50.

1. A system consists of two components that are exposed to three independent shock processes. Shock 1 affects only Component 1, Shock 2 affects only Component 2, and Shock 3 affects both components simultaneously. This type of shock model leads to Marshall–Olkin bivariate distributions.

Each shock arrival time follows a Weibull distribution with parameters (α, λ_i) for $i = 1, 2, 3$, and all shocks occur independently. Each component fails immediately upon receiving a shock that affects it.

- Derive the joint reliability function of the components.
- Obtain the corresponding joint probability density function (PDF) of the components.
- Determine the distribution of the system lifetime when the system fails upon the failure of the first component (series system).

(5+5+5)

2. In a high-volume production process, the probability that an item is defective varies each day due to changes in temperature and humidity. Let this daily defect probability be a random variable P , follows Normal distribution with mean 0.1 and standard deviation 0.02, and assume that the number of defective items in a random sample of $n = 20$ items on a given day follows a Binomial distribution conditional on P : $X | P = p \sim \text{Binomial}(20, p)$.

- Using the law of total expectation ($E[X] = E_P[E_X[X | P]]$), find the expected number of defective items, $E[X]$.
- Using the law of total variance ($\text{Var}(X) = E_P[\text{Var}_X(X | P)] + \text{Var}_P(E_X[X | P])$), find the variance of X , i.e., $\text{Var}(X)$.

(5+10)

3. If all the components of a series system have increasing (or decreasing) hazard rates and the components are independent, prove that the system lifetime also possesses an increasing (or decreasing) hazard rate property.

(10)

4. The B_p life of a component or system is the time by which p % of the population is expected to fail. The lifetime (in thousands of hours) of a certain type of industrial pump is approximately lognormally distributed with parameters $\mu = 6.0$ and $\sigma = 0.5$. Find the B_{10} life of the pump.

(5)

5. A shipping company is monitoring the number of trucks arriving at two nearby warehouses, Warehouse X and Warehouse Y , in a 5-minute interval. Let X and Y represent the number of trucks arriving at Warehouse X and Warehouse Y , respectively. The joint PMF is given by:

$$f(x, y) = c(1 + x + y + xy); x, y = 0, 1, 2.$$

- Find the mean and variance of $X + Y$, the total number of trucks arriving at both warehouses.
- Determine the correlation between X and Y .

(8+7)