Indian Statistical Institute, Bangalore M.S. (QMS) First Year First Semester – Reliability, Maintainability and Safety I

Semestral Exam Duration: 3 Hrs Date: November 17, 2017 Max Marks: 100

Answer as many Questions as you can. The maximum marks you can score is 100.

Question (1): Tick the most appropriate answer for the following questions with justification. Justification is not required for the questions with * mark

a) Assuming an exponential failure distribution, the probability of surviving an operating time	
equal to twice the MTBF is	(3)
(i) practically zero (ii) about 14% (iii) about 36% (iv) none of the above	

*b) The lifetime of a product that degrades overtime is often modeled by(2)(i) a exponential variable (ii) a normal variable (iii) a lognormal variable (iv) a gamma variable(2)

c) A device has a failure rate characteristics which can be described by a Weibull failure model with a scale parameter of 2.0X10⁸ and a shape parameter of 2.The percentage of items expected to fail in 1000 hours
 (4)

(i) 5 percent of the items (ii) 3 percent of the items (iii) 0.5 percent of the items (iv) None of the above

d) If the b_{10} life for an equipment having a constant failure rate is 2000 hours, then the average failure rate over 2000 hours is (5)

(i) 42.5 X 10 ^ -6 failures per hour (ii) 52.5 X 10 ^ -6 failures per hour (iii) 63.8 X 10 ^ -6 failures per hour (iv) None of the above

e) An analysis of historic data indicates that the repair time for a particular product can be modeled by the Lognormal Distribution with μ =1.7 hrs and σ =0.65 hrs. The estimate for MTTR (Mean Time to Repair) is (3) (i) 5.5 hours (ii) 6.8 hours (iii) 7.4 hours (iv) 8.1 hours

*f) The flat portion of the bathtub curve is a region of chance failures; therefore the reliability equation R= $exp(-t\lambda)$

(2)

(i) does not apply to this region (ii) only applies to this region (iii) applies to the wear out region as well as the flat region (iv) applies to the entire bathtub curve

g) If a system reliability of 0.998 is required , what reliability of two components in series is required?
(3)

(i) 0.99 (ii) 0.999 (iii) 0.98 (iv) 0.9999 (v) 0.998

h) The hazard function for a Normal distribution is a monotonically increasing function of t	time (t).
(i) True (ii) False	(3)
(i)Larger the Weibull slope " β ", more uniform is the product life(i)True (ii) False	(5)

a particular pickup truck the follow	ving data was obtained:	
KILOMETER INTERVAL	NUMBER OF FAILURES	
M< 2,000	707	
2,000≤M<4,000	532	
4,000≤M<6,000	368	
6,000≤M<8,000	233	
8,000≤M<10,000	231	
10,000≤M<12,000	136	
12,000≤M<14,000	141	
14,000≤M<16,000	78	
16,000≤M<18,000	101	
18,000≤M<20,000	46	
20,000≤M<22,000	51	
22,000≤M<24,000	56	
For the above data calculate Failure	Function, Reliability Function and	
	alation size is 2,680 and the above data	
represents all of the failures		(10)
L		
Question (3): For a two parameter Weibull Distr	ribution , derive the expression of Average	5
Failure Rate (AFR) over an interva	ıl (0,T)	(10)
Question (4): In a quality control application, the	e dimension of pieces are assumed to be	
normally distributed with variance	e 0.09. If the tolerances are 0.20 inch apart,	
find the probability of '3' defectives	s in '5' pieces selected at random [assume	
mean of the process midway betwe	een limits]	(10)
Question (5): The time to failure of a component	has a gamma distribution with the shape	
parameter '2' and scale parameter '1	1/3'. Determine the reliability of the	
component and the hazard rate at	'10' time units .What's the mean life?	
		(6+4+2=12)
Question (5): (i)Derive an expression of the Relia	ability function for a standby system that	
has two " subsystems"		
	constant failure rate λ_1 and λ_2 , then find ou	t
the expression of the reliability f		
	systems A,B,C in series with failure rates	
$\lambda_{\rm A} = 0.95 \times 10^{-5}, \ \lambda_{\rm B} = 0.06 \times 10^{-5}, \ \lambda_{\rm C}$		
2	e and reliability for an operating time of	
	nt is suitable for application that requires	
1,00,000 hours		(6+6+8=20)
Question (6): If the number of occurrences of sor		
-	n show that the distribution of the interva	
between occurrences is Exponentia	I with parameter λ	(10)
Question (7): Determine the" b ₅₀ " and " b ₉₀ " lives		
-	s known that under highly overloaded	
	rators will fail at the end of 50 hours of	$\langle 0 \rangle$
operation		(8)

Question (2): A warranty reporting system reports field failures. For the rear brake drums on a particular pickup truck the following data was obtained: