INDIAN STATISTICAL INSTITUTE

(Pattern Recognition)

END-SEMESTER EXAMINATION

(MS-QR, SQC)

Date: 23-04-2015

Duration: 180 minutes

Maximum Marks: 56

Note: Answer any SEVEN

- 1. Define erosion and dilation operators. When is a dilation operator? [4+4]
- 2. Solve
 - a. Show that an opening is dual to closing operator.

[4]

b. Show that opening is an idempotent operator

[4]

3. Explain the results obtained with an area-opening operator for the following figure.

[8]

4. Trace the steps of the Vincent-Soille watershed algorithm for the image in the following figure.

[8]

2	2	2	2	2	2	2
2	2	30	3.0	30	2	2
2	30	20	20	20	30	2
40	4.0	20	20	20	40	40
1	40	20	20	20	40	8
1	1	40	20	4.0	8	8
1	1	1	20	0	0	0

5. Describe the canny edge detection method for gray level image.

[8]

6. Let
$$\bar{X}^t = (X_1, X_2, X_3, X_4)$$
 be a random vector with variance-covariance matrix
$$\Sigma = \begin{cases} 3 & 1 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 0 & 0 & 4 & -1 \\ 0 & 0 & -1 & 4 \end{cases}, \text{ find TWO principal component of } \bar{X}$$
 [8]

- 7. State and derive the back error propagation algorithm for multi-layer perceptron.
- 8. Describe the Branch and Bound Feature selection method with an example of selecting TWO optimum features out of SIX features.