Indian Statistical Institute MSLIS, Mid-semester Examination Paper-12-ELEMENTS OF MATHEMATICS-II

Time: 1 hr 30 minutes

Total Marks: 30

Answer All Questions

01	Fundamental to 14	
Q1	Explain with suitable examples the meaning of relations and sets.	(2)
	If $(\frac{x}{3} + 1, y - \frac{2}{3}) = (\frac{5}{3}, \frac{1}{3})$ find the values of x and y.	
Q2	If $G = \{7,8\}$ and $H = \{5,4,2\}$ find $G \times H$ and $H \times G$.	(2)
Q3	Let A = $\{1,2,3,5\}$ and B= $\{4,6,9\}$. Define a relation R from A to B by R = $\{(x,y)$: the difference between x and y is odd; $x \in A$, $y \in B\}$. Write R in roster form	(2)
Q4	What are functions? Is the following relation a function? Justify your answer (i) R1 = $\{(2, 3), (12, 0), (2, 7), (-4, 6)\}$ (ii) R2 = $\{(x, x) \mid x \text{ is a real number}\}$	(2)
Q5	Find the domain for which the functions $f(x) = 2x^2 - 1$ and $g(x) = 1 - 3x$ are equal.	(2)
Q6	If f and g are real functions defined by $f(x) = x^2 + 7$ and $g(x) = 3x + 5$, find each of the following (a) $f(3) + g(-5)$ (b) $f(-2) + g(-1)$	(2)
Q7	Find the domain of the function f given by $f(x) = (\frac{x^2+2x+1}{x^2-x-6})$	(2)
Q 8	Let the function $f: R \rightarrow R$ be defined by $f(x) = 4x - 1$, $\forall x \in R$. Then, show that f is one-one.	(2)
Q9	In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.	(2)
	(i) $f: R \rightarrow R$ defined by $f(x) = 3 - 4x$	
	(ii) $f: R \rightarrow R$ defined by $f(x) = 1 + x2$	

Q10	 a) Show that the function f: R → R defined by f(x) = x/(x²+1) ∀x ∈ R, is neither one-one nor onto. b) Show that the function f: R->R defined as f(x) = x² is neither one-one nor onto. 	(4)
Q11	Find the inverse function of f given by a) $f(x) = (x - 3)^2$, if $x >= 3$ b) $f(x) = (x + 1)/(x - 2)$	(4)
Q12	What is composition of two functions? Explain with examples. Given $f(x) = x + 2$ and $g(x) = 4 - x^2$, find the following. a. $(f \circ g)(x)$ b. $(g \circ f)(x)$ c. $(f \circ g)(-1)$ d. $(g \circ f)(-2)$	(4)