Indian Statistical Institute

MSLIS, End-semester Examination

Paper-12-ELEMENTS OF MATHEMATICS-II

Time: 3 hr

Total Marks: 70

Answer Any Seven Questions

Q1	What is meant by limit of a function. Estimate the value of the following limit.	10
	lim $g(x)$ where, $g(x) = \begin{cases} \frac{x^2 + 4x - 12}{x^2 - 2x} & \text{if } x \neq 2 \\ 6 & \text{if } x = 2 \end{cases}$	
	$\min_{x \to 2} g(x) \text{where,} g(x) = \begin{cases} x^2 - 2x \end{cases}$	
	$\begin{array}{c} 6 & \text{if } x = 2 \end{array}$	
Q2	Estimate the value of the following limits.	10
		10
02	$\lim_{t \to 0^+} H(t) \text{and} \lim_{t \to 0^-} H(t) \text{where, } H(t) = \begin{cases} 0 & \text{if } t < 0 \\ 1 & \text{if } t \ge 0 \end{cases}$	
Q3	State Rolle's theorem. Let $f(x) = \frac{1}{x^2}$.	10
	Determine if Rolle's Theorem guarantees the existence of some c in (-1, 1) with f' (c) = 0. If not, explain why not.	
Q4	Explore the Mean Value theorem. Determine the value of c which satisfies the	
	conclusion of the Mean Value theorem for the following function $f(x) = x^3 + 2x^2 - x$ on [-1,2]	10
Q5	Find the basic derivatives of:	
	a. x^n	10
	b. log x	1
	c. <i>e</i> ^x	
	d. sec x	
	e. cosec x	
20	Find the derivative of the following function: a. $6x^3 - 9x + 4$	10
	b. $2x^3 + \frac{3}{2}$	
	x	
7	Use product rule to derivatives of : $x^2 \cos x$	10
	$a. x = \cos x$ $b. e^x \sin x$	
	Apply quotient rule to find the derivatives of:	
1 2	$\frac{1}{ax^2+bx+c}$	10
(ax^2+bx+c	
	2x	
b	$\frac{2x}{3x^2+1}$	
F	ind the integrals of basic functions	10
1	∫x dx	10
h	∫sin x dx	

	c.∫cosec²x dx	
	$d. \int \frac{1}{x} dx$	
	$e. \int a^x dx$	
Q10	Use Integration by substitution to compute the integral of - $\int \sin mx dx$	10
Q11	Find the integral of the function by using the method of "Integration by partial fractions $\int_{\overline{(x+1)(x+2)}}^{1} dx$	10
Q12	Find the integral of $\int (\sin x + \cos x) dx$	10