Course Archives Theoretical Statistics and Mathematics Unit | |||||||
Course: Mathematical Morpholoy and Applications Level: Undergraduate Time: Currently not offered |
|||||||
Syllabus Past Exams Syllabus: Introduction to mathematical morphology: Minkowski addition and subtraction, Structuring element and its decompositions. Fundamental morphological operators: Erosion, Dilation, Opening, Closing. Binary Vs Greyscale morphological operations. Morphological reconstructions: Hit-or-Miss transformation, Skeletonization, Coding of binary image via skeletonization, Morphological shape decomposition, Morphological thinning, thickening, pruning. Granulometry, classification, texture analysis: Binary and greyscale granulometries, pattern spectra analysis. Morphological Filtering and Segmentation: Multiscale morphological transformations, Top-Hat and Bottom-Hat transformations, Alternative Sequential filtering, Segmentation. Geodesic transformations and metrics: Geodesic morphology, Graph-based morphology, City-Block metric, Chess board metric, Euclidean metric, Geodesic distance, Dilation distance, Hausdorff dilation and erosion distances. Efficient implementation of morphological operators. Some applications of mathematical morphology. Reference Texts: 1. J. Serra, 1982, Image Analysis and Mathematical Morphology, Academic Press London, p. 610. 2. J. Serra, 1988, Image Analysis and Mathematical Morphology: Theoretical Advances, Academic Press, p. 411. 3. L. Najman and H. Talbot (Eds.), 2010, Mathematical Morphology, Wiley, p. 50. 4. P. Soille, 2003, Morphological Image Analysis, Principles and Applications, 2nd edition, Berlin: Springer Verlag. 5. N. A. C. Cressie, 1991, Statistics for Spatial Data, John Wiley. Top of the page Past Exams | |||||||
Midterm
Top of the page | |||||||
[ Semester Schedule ] [ Statmath Unit ] [Indian Statistical Institute] |