Course Archives Theoretical Statistics and Mathematics Unit
Course: Electrodynamics
Instructor: Prabuddha Chakraborty
Room: G26
Level: Undergraduate
Time: Currently offered
Syllabus
Past Exams


Syllabus:

i) Brief review of vector calculus. Physical interpretation of gradient, divergence and curl; Statement and physical interpretations of Greens theorem, Gauss divergence theorem, Stokes curl theorem. Differential forms (in R3); gradient, divergence, curl as co-boundaries (ds) of differential forms (in R3); Statement of Stokes theorem for differential forms (in R3); Greens theorem, the divergence theorem, the curl theorem as special cases (Generalized Fundamental Theorem of Calculus). Spherical coordinates; Cylindrical coordinates. Dirac delta function in in one/two/three dimensions; Delta function as divergence of a radially outward vector field; Justification for treating Dirac delta as a function; Remarks on Schwartzs distribution theory. Vector fields and potentials.
ii) Electrostatics. Coulombs Law for discrete and continuous charge distributions; Divergence and curl of electrostatic fields. Electric potential; Poissons equation and Laplaces equation; Electrostatic Boundary Conditions; General remarks on Greens function (Impulse response). Work and Energy in Electrostatics. Conductors; Surface Charge and the Force on a Conductor; Capacitors.
iii) Potential and field due to arrangement of charges. Solution to Laplaces equation; Harmonic Functions; Mean-value property; Illustration in One Dimension, Two Dimensions, Three Dimensions. Boundary Conditions and Uniqueness Theorems for Laplaces equation; Application to conductors.
iv) The Method of Images. Separation of variables. Multipole Expansion; Monopole and Dipole terms; The Electric Field of a Dipole. Dielectrics; Polarization; Electric displacement.
v) Magnetostatics. Lorentz Force Law; Magnetic fields; Currents. Biot-Savart Law; Steady Currents; Magnetic Field of a Steady Current. Divergence and Curl of Magnetic field; Amperes Law; Maxwells Equations for Electrostatics and Magnetostatics. Magnetic vector potential.
vi) Electromotive Force; Ohms Law. Electromagnetic Induction; Faradays Law; Inductance; Energy in magnetic field. Maxwells correction to Amperes law for magnetodynamics; Maxwells Equations - differential and integral form; The Conundrum of Magnetic Charge/Monopole.
vii) Conservation Laws; The Continuity Equation; Poyntings work-energy theorem of electrodynamics. Maxwells Stress Tensor; Conservation of Momentum. Electromagnetic Waves. The Wave Equation; Sinusoidal Waves; General remarks on the Fourier transform; Polarization. ElectromagneticWaves in Vacuum; The Wave Equation for E and B; Monochromatic Plane Waves; Energy and Momentum in Electromagnetic Waves.
viii) Special Theory of Relativity from Maxwells electrodynamics; Einsteins thoughtexperiment and postulates. Relativity of simultaneity; Time dilation; Lorentz length contraction. The Lorentz group of transformations; The Structure of Spacetime; The Lorentz Metric; Space-time diagrams. Remarks on magnetism as a relativistic phenomenon.

Reference Texts:

(a) Introduction to Electrodynamics - D. J. Griffiths.
(b) Foundations of Electromagnetic theory - J. R. Reitz, F. J. Milford andW. Charisty.
(c) (Chapter 5) A Visual Introduction to Differential Forms and Calculus on Manifolds - J. P. Fortney.
(d) Theory and Problems of Electromagnetics (Schaums Outlines) - J. A. Edminister.
(e) A Guide to Physics Problems part 1: Mechanics, Relativity and Electrodynamics - S. B. Cahn and B. E. Badgorny.

Evaluation:
Mid-term 25 marks
Assignment 25 marks
Final Exam 50 marks
Total 100 marks


Top of the page

Past Exams
Midterm
23.pdf
Semestral
23.pdf
Supplementary and Back Paper
23.pdf

Top of the page

[ Semester Schedule ][ Statmath Unit ] [Indian Statistical Institute]