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Frobenius and His Density Theorem for Primes 

Introduction 

B Sury 

Our starting point is the following problem which ap- 
peared in the recent IMO (International Mathematical 
Olympiad) �9 

I f  p is a prime number, show that there is another prime 
number q such that n p - p is not a multiple of q for any 
natural number n. 

Now, this problem can be solved using elementary math- 
ematics (otherwise, it would not be posed in the IMO). 
However, how does one guess that such a thing ought to 
be true? Can we produce an abundance of such prob- 
lems in some systematic manner? We take this problem 
as a point of reference to discuss some deep number 
theory (which is already a century old) which not only 
solves this problem, but also gives us an understand- 
ing of why such facts are true and what more one can 
expect. 

Rephrasing and Generalisation 

Let us start by rephrasing the above problem. For a 
prime p, consider the integral polynomial f ( X )  = X p - 

p. For any prime q, one may consider f as a polyno- 
mial over 7//q7/, the integers modulo q by reducing the 
coefficients of f modulo q. Then, the problem asks us 
to prove that  there is some prime q for which f does 
not have a root in 7//q7]. So, when is it true that  an 
integral polynomial has roots in 7/ /q7/ for  every prime 
p ? Obviously, if the integral polynomial already has an 
integral root, this happens. Can it also happen when f 
has no integral root ? 

Before answering this, let us note that  every nonconstant 
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integral polynomial  has a root in ~_/q7/ for infinitely 
many primes q. Here is the simple argument proving it. 
See also [31. 

Let P ( X )  = ao + a l X  + " .  + a n X  n be an integral poly- 
nomial with n > 0 and an r O. For any integer d,. look 
at the polynomial  

, n - 1  a d , X ~  P(aodX)  = ao( l + a l d X  +aoa2d;X2 +" "-t-ao n ). 
n - - 1  i n  • r n  S i n c e Q ( X ) = l + a l d X + a 0 a 2 d 2 X  2 + . . . + n o  ana z 

takes the values 0, 1 , - 1  at the most  for finitely many 
values of X,  it takes a value Q(m) =~ 0 , 1 , - 1  which 
must then  be a multiple of some prime p. As Q(m) = 1 
mod d, p is coprime to d. Therefore, for any d, we have 
shown tha t  there is some m such tha t  P(aodm) is zero 
modulo p for some prime p coprime to d. Varying d, we 
have infinitely many such primes p. 

The set of odd primes modulo which the polynomial  
X 2 + 1 has roots, consists precisely of all primes in 
the ari thmetic progression 4n + 1. In general, every 
quadratic polynomial  has a corresponding ari thmetic 
progression such that  the polynomial  has roots mod- 
ulo each prime in this progression, and modulo no other 
primes. This follows from the famous quadratic reci- 
procity law. 

Returning to our case f ( X )  = X p - p ,  let us see whether  
we can explicitly get an infinite set of primes modulo  
which f does have roots. Consider any prime q and  
the group (7]/q77)* of nonzero integers modulo q under  
multiplication modulo q. If the p- th  power map 0 �9 a ~-~ 
a p on (7//q~.)* is not 1 - 1, then  there exists some a ~ 1 
with a p = 1. Since a q-1 = 1, we must  have p/(q  - 1). In 
other words,  whenever q 7~ 1 mod p, our polynomial  f 
has a root modulo q. 

Let us now return to the possibility of producing a poly- 
nomial which has no integral roots but  has roots mod-  
ulo every integer. Consider the polynomial g(X)  = 
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(X  2 - 13)(X 2 -  17) (X 2 - 221). Evidently,  its roots  

- i -v /~ ,  i v / ~ ,  = E ~  axe not  integral  (or even rat ional) .  

We show tha t  it has roots  modu lo  any nonzero integer. 
Recall  t ha t  t he  Chinese  remainder  t heo rem tells us tha t  
whenever  m l , ' " ,  mr  are pairwise copr ime integers and  
al ,  �9 �9 �9 ar are any integers,  there  is an integer a which is 
s imul taneous ly  - ai m o d  mi for i = 1 , - - . ,  r. Therefore,  
by the  Chinese r emainder  theorem,  it suffices to prove 
t h a t  g has roots  m o d u l o  every pr ime power. In wha t  
follows, for any  p r ime  p and a copr ime to p, the  nota-  
t ion  (p) s tands  for 1 or - 1  according to whe the r  a is 
a square or no t  m o d  p. One also says in the  respective 
cases t h a t  a is a quadra t i c  residue modu lo  p or a is a 
quadra t ic  nonres idue  modu lo  p. 

Let  us look at  g now. If p is an odd  pr ime such tha t  
( ~ )  -- 1, t h e n  t 2 --- 13 m o d  p for some integer t. We 

show by induc t ion  on n tha t  x 2 - 13 m o d  pn has a 
solution.  Suppose  t 2 - 13 m o d p  ~-1, say t e -- 13+up  ~-1. 

Consider  to = t +pn- - l t l  where we shall choose tl so tha t  

to 2 -- 13 m o d p  ~. This  requires u + 2 t t x  - 0 m o d p ;  such a 
choice of tx can be m a d e  since 2t is copr ime to p. Thus ,  
we have shown t h a t  if 13 is a quadra t ic  residue modu lo  
an  odd  pr ime p, t he  po lynomia l  g has a root  modu lo  
any power p~. The  same a rgument  works if 17 or 221 
is a quadra t ic  res idue m o d u l o  a pr ime p. For powers of 
2 we note  t ha t  17 --- 32 m od  23 and  work as above bu t  
wi th  a minor  change; we try t + 2"-2t l  ins tead of the  
(n - 1) 8t power.  Note  t h a t  13 - 82 m o d  17 and 17 - 22 

m o d  13. Fur ther ,  for any p, one of 13, 17 or 221 is a 
square  modu lo  p. This  is because the  h o m o m o r p h i s m  
x ~-~ x 2 on (7//p7/)* for an odd  pr ime  p, has kernel of 

order  2. Its image, which is the  Subgroup of squares, 
is the  unique subgroup  of index 2. Hence the  cosets of 
13 and  17 mul t ip ly  to  give the  coset of 221. Thus,  the  
above a rgumen t  goes t h rough  for all p and  it follows t ha t  
t he  po lynomia l  g, indeed,  has roots  modu lo  any nonzero 

integer.  
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remainder theorem 
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The p-th roots of 

any prime number 
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p. The Eisenstein 
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Now, let us ask ourselves what is different about X v - p  
in comparison with the above example. It is immedi- 
ately evident that g is a reducible polynomial over 7/ 
while the famous Eisenstein criterion (see [3])shows that 
the polynomial f ( X )  = X p - p is irreducible over 77. In 
fact, irreducibility of f can be proved quite easily even 
without the Eisenstein criterion. 

Ok, but let us look at another obvious irreducible poly- 
nomial over 77 - the linear polynomial h(X)  = a X  + b 
where (a, b) = 1. But, if p is any prime not dividing 
a, then a X  + b has a root modulo p. In other words, 
h does have a root modulo all but finitely many primes 
even though it is irreducible over Q. Thus, a reasonable 
guess for us could be : 

(*) An integral polynomial which is irreducible over 7I 
and has degree > 1 cannot have roots modulo all but 
finitely many primes. In other words, for such a poly- 
nomial, there are infinitely many primes modulo which 
the polynomial has no roots. 

Our intention is to show that this is true. In fact, one 
may wonder whether we have the much stronger result 
that an irreducible polynomial f over 77 remains irre- 
ducible over all but finitely many primes. But, the fol- 
lowing example dashes this hope. It was already ob- 
served by Hilbert. 

Let p,q be odd prime numbers such that (~q) = (~) = 1 

and p - 1 rood 8. Then, the polynomial P ( X )  = ( X  2 - 
p _  q)2 4pq is irreducible whereas it is reducible modulo 
any integer. 

Now 

P ( X )  = x 4 - 2(p + q ) X  2 + (p - q)2 

= ( x -  v ~ -  v ~ ) ( x  + v f  + v~)  

~ x -  vf  + v~)(x + v ~ -  v~). 
Since v/-fi, v/~, vffi 4- v~,  ~ are all irrational, none of 
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the linear or quadrat ic  factors of P(X) are in Z[X] i.e. 
P(X) is irreducible over 7/. Note, as before, that  it is 
enough to show tha t  a factorisation of P exists mod- 
ulo any prime power as we can use Chinese reminder 
theorem to get a factorisation modulo a general integer. 

Now, P(X) can be wri t ten in the following ways: 

P(X) = X 4 - 2 ( p + q ) X  ~+(p -q )2  
= (X 2 + p _ q ) 2 _ 4 p x  2 

= (X 2 _ p + q ) 2 _ 4 q X  2 

= (X 2 _ p _ q ) 2 _ 4 p q .  

The second and third equalities above show that  P(X) is 
reducible modulo any q" and any p" respectively. Also 
since p = 1 mod 8,p is a quadratic residue modulo 2 
and, therefore, modulo any 2"; the second equality above 
again shows tha t  P(X) is the difference of two squares 
modulo  2", and hence reducible mod 2". 

If g is a prime 7 ~ 2,p,q, at least oneo f  (~), (e ~) and ( t  ~ )  is 
1 by the product  formula (ae).(~).(~) = 1 that  we noted 
earlier. According as (~), (t ~) or ( ~ )  = 1, the second, 
th i rd  or fourth equality shows that  P(X) is reducible 
mod g~ for any n. 

We mention, in passing, a very simple but important  
general method  of proving the irreducibility of an inte- 
gral polynomial. This will also set up the  notat ion for 
our main  s ta tement  when we address ~ (*). To illustrate 
it, consider the polynomial  p(X) = X 4 + 3X 2 + 7X + 4. 
Modulo 2, we have p(X) = X ( X  a + X + 1) and both  
factors are irreducible over the field 77/27/. We say that  
the  decomposition type of p(X) mod 2 is 1, 3. There- 
tbre, either p is irreducible over 7/ or if not, it is a 
product  of a linear factor and an irreducible factor of 
degree 3 over 77. But, modulo 11, we have p(X) = 
(X 2 + 5X - 1)(X 2 - 5X - 4) where both  factors are 
irreducible over the field 7//117/. That  is, the decompo- 
sition type of p mod 11 is 2, 2. Thus, it cannot be that  
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p has a linear factor over 7/. In other words, p must be 
irreducible over 77. 

The Not ion  of Density of Primes 

Let us get back to the guess quoted above as (.). We 
need some notations. Let f be a monic integral poly- 
nomial of degree n. Suppose that f has distinct roots 
c~1," �9 �9 c~n C ~; equivalently, the discriminant d i s c ( f )  

0. Let K = Q(c~l,... ,  as), the subfield of ~ generated 
by the roots; that is, all rational expressions in the c~/'s 
with coefficients from Q. This is the smallest subfield 
of ~ which contains all the a~'s; it is also known as the 
splitting field of f for the reason that it is the smallest 
field over which f splits into the product 1-I'i~l ( X -  c~). 
We look at the group G of those permutations of c~'s 
which give rise to a field automorphism of K. This is 
known as the Galois group of f and denoted by Gal(f) .  
For instance, if f ( X )  = X 2 - a for some nonsquare in- 
teger a, then K = Q(x/~) where v/~ denotes a square 
root of a in ~ and G has two elements I, a where (7 
interchanges ~ and -v/-a. In general, although G is 
a subgroup of Sn, the permutations which belong to G 
are rather restricted; for example if f is irreducible over 
Q, then a permutation in G is necessarily transitive on 
the c~'s. If p /~disc(f) ,  then the decomposition type of 
f modulo p gives a partition of n as we saw above. Oil 
the other hand, each element of G has a cycle decompo- 
sition as an element of Sn and, thus defines a partition 
of n as well. Frobenius's wonderful idea is to relate the 
numbers of such partitions for a particular type. This 
will be expressed in terms of a notion of density of a set 
of prime numbers. 

A set S of  p r i m e s  is said to have dens i ty  (~ ~] ~ z  p 1/p -+ 

as s --+ 1 +. Here 1 + means the limit when s tends to 
1 from the right. For instance, any finite set of primes 
has density O. Using this notion of density, we state: 
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Frobenius Density Theorem 

The set of primes p modulo which a monic integral, ir- 
reducible polynomial f has a given decomposition type 
nl, n 2 , ' "  ,n,., has density equal to N /O(Gal ( f ) )  where 
N = I{a e Gal ( f )"  a has acyc lepa t ternn l ,n2 , . . . , nr} l .  

As we point out now, our guess (.) is vindicated by this 
theorem and a little bit of group theory; in particular, 
this also solves the IMO problem. 

If f is irreducible, and has roots modulo all but finitely 
many primes, then the theorem shows that each a has 
a cycle pattern of the form 1, n2, . . .  This means that 
each element of Gal(f)  fixes a root. Since the roots of 
f are transitively moved around by Gal(f), this group 
would be the union of the conjugates of its subgroup 
H consisting of elements which fix a root of f ,  say al .  
However, it is an elementary exercise that a finite group 
cannot be the union of conjugates of a proper subgroup. 
Thus, in our case H = Gal(f). This means that Gal(f) 
fixes each a~ and is therefore trivial. That is, f is linear. 

A famous theorem of Dirichlet on primes in arithmetic 
progressions asserts that  the density of the set of primes 
p - a mod n is 1/r  for any (a,n) = 1. Dirichlet's 
theorem implies Frobenius's theorem for the polynomial 
f ( X )  = X " - 1 .  The converse conclusion cannot quite be 
made. Thus, Frobenius formulated a conjecture which 
generalises both his theorem and Dirichlet's theorem. 
This was proved 42 years later by Chebotarev and is 
known now as the Chebotarev density theorem. This is 
an extremely useful result and even effective versions are 
known (see the end of the article for what the word 'el- 
fective' means here). Chebotarev's idea of proving this 
has been described by two prominent mathematicians 
as " a spark from heaven". In fact, this theorem was 
proved in 1922 ("while carrying water from the lower 
part of town to the higher part, or buckets of cabbages 
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4 0  

to the market, which my mother sold to feed the en- 
tire family") and Emil Artin wrote to Hasse in 1925 : 
"Did you read Chebotarev's paper? ... If it is correct, 
then one surely has the general abelian reciprocity laws 
in one's pocket..." Artin found the proof of the general 
reciprocity law in 1927 using Chebotarev's technique (he 
had already boldly published the reciprocity law in 1923 
but admitted that  he had no proof). Nowadays, Artin's 
reciprocity law is proved in some other way and Cheb- 
otarev's theorem is deduced from it! 

To state Chebotarev's theorem, we recall one notion - 
the Frobenius map. The idea is that  given a monic in- 
tegral polynomiM f and its splitting field K, we try to 
associate to any prime p ~ disc(f), an element Op of 
Gal(f) in a natural manner. If we can do this, one may 
expect that  the decomposition type of f modulo p coin- 
cides with the cycle pattern of Op. It can almost be done 
except that  a prime p gives rise to a conjugacy class of 
elements in Gal(f).  We do not define the Frobenius con- 
jugacy class here as it is somewhat technical and merely 
explain some properties it has. For any prime number 
p, the p-th power map Frobp is an automorphism of the 
field Fp which is identity on Fp. Therefore, Frobp per- 
mutew the roots of any polynomial over Fp. Indeed, the 
Galois theory of finite fields amounts to the statement 
that if g is a polynomial over Fp with simple roots, then 
the cycle pattern of Frobp viewed as a permutation of 
the roots of g coincides with the decomposition type of g 
over Fp. In our case, we start with an integral polyno- 
mial f and look at it modulo p for various primes p. The 
basic theory of algebraic numbers shows that  whenever 
p Xdisc(f), the automorphism Frobp gives rise to a con- 
jugacy class in Gal(f),  called the Frobenius conjugacy 
class modulo p. 

In Frobenius's density theorem, one cannot distinguish 
between two primes p, q defining different conjugacy cla- 
sses C(x) and C(y), where some powers of x and y are 
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conjugate. For instance, for the polynomial X 1~ - 1, the 
decomposition type modulo primes congruent to 1, 3, 7, 9 
mod 10 are, respectively, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 1, 1, 4, 4; 
1,1,4,4; 1,1,2,2,2,2.  

Frobenius's theorem cannot distinguish between primes 
which are 3 mod 10 and those which are 7 mod 10; 
they define different conjugacy classes in Gal(X 1~ - 1). 
Thus, it would imply that  the number of primes = 3 
or 7 mod 10 is infinite but doesn't say whether each 
congruence class contains infinitely many primes. This 
is what Chebotarev's theorem asserts. 

Chebotarev's Density Theorem 

Let f be monic integral and assume that disc ( f  ) does 
not vanish. Let C be a conjugacy class of Gal(f ). Then, 
the set of primes p not dividing disc ( f  ) for which ap C 
C, has a well-defined density which equals ~ lal" 

We state here two concrete results which can be proved 
with the aid of Chebotarev's density theorem. 

(I) The set of primes which are expressible in the form 
3x 2 + xy + 4y 2 for integers x, y, has density 1/5. 

(II) The set of primes p for which the decimal expansion 
of 1/p has odd period, has density 1/3. 

Finally, we end with the remark that  a recent result 
due to Berend & Bilu ([1]) gives an 'effective version' 
of Chebotarev's theorem. This means in simple terms 
that  given a nonconstant integral polynomial, one has a 
certain number N, explicitly determined in terms of the 
irreducible factors of f and their coefficients, so that f 
will have an integral root if, and only if, it has a root 
modulo N. See also [2] for a nice historical introduction 
to Frobenius's and Chebotarev's density theorems. 
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